Metamath Proof Explorer


Theorem dsmmbas2

Description: Base set of the direct sum module using the fndmin abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses dsmmbas2.p P = S 𝑠 R
dsmmbas2.b B = f Base P | dom f 0 𝑔 R Fin
Assertion dsmmbas2 R Fn I I V B = Base S m R

Proof

Step Hyp Ref Expression
1 dsmmbas2.p P = S 𝑠 R
2 dsmmbas2.b B = f Base P | dom f 0 𝑔 R Fin
3 1 fveq2i Base P = Base S 𝑠 R
4 3 rabeqi f Base P | dom f 0 𝑔 R Fin = f Base S 𝑠 R | dom f 0 𝑔 R Fin
5 simpll R Fn I I V f Base S 𝑠 R R Fn I
6 fvco2 R Fn I x I 0 𝑔 R x = 0 R x
7 5 6 sylan R Fn I I V f Base S 𝑠 R x I 0 𝑔 R x = 0 R x
8 7 neeq2d R Fn I I V f Base S 𝑠 R x I f x 0 𝑔 R x f x 0 R x
9 8 rabbidva R Fn I I V f Base S 𝑠 R x I | f x 0 𝑔 R x = x I | f x 0 R x
10 eqid S 𝑠 R = S 𝑠 R
11 eqid Base S 𝑠 R = Base S 𝑠 R
12 reldmprds Rel dom 𝑠
13 10 11 12 strov2rcl f Base S 𝑠 R S V
14 13 adantl R Fn I I V f Base S 𝑠 R S V
15 simplr R Fn I I V f Base S 𝑠 R I V
16 simpr R Fn I I V f Base S 𝑠 R f Base S 𝑠 R
17 10 11 14 15 5 16 prdsbasfn R Fn I I V f Base S 𝑠 R f Fn I
18 fn0g 0 𝑔 Fn V
19 dffn2 0 𝑔 Fn V 0 𝑔 : V V
20 18 19 mpbi 0 𝑔 : V V
21 dffn2 R Fn I R : I V
22 21 biimpi R Fn I R : I V
23 fco 0 𝑔 : V V R : I V 0 𝑔 R : I V
24 20 22 23 sylancr R Fn I 0 𝑔 R : I V
25 24 ffnd R Fn I 0 𝑔 R Fn I
26 5 25 syl R Fn I I V f Base S 𝑠 R 0 𝑔 R Fn I
27 fndmdif f Fn I 0 𝑔 R Fn I dom f 0 𝑔 R = x I | f x 0 𝑔 R x
28 17 26 27 syl2anc R Fn I I V f Base S 𝑠 R dom f 0 𝑔 R = x I | f x 0 𝑔 R x
29 fndm R Fn I dom R = I
30 29 rabeqdv R Fn I x dom R | f x 0 R x = x I | f x 0 R x
31 5 30 syl R Fn I I V f Base S 𝑠 R x dom R | f x 0 R x = x I | f x 0 R x
32 9 28 31 3eqtr4d R Fn I I V f Base S 𝑠 R dom f 0 𝑔 R = x dom R | f x 0 R x
33 32 eleq1d R Fn I I V f Base S 𝑠 R dom f 0 𝑔 R Fin x dom R | f x 0 R x Fin
34 33 rabbidva R Fn I I V f Base S 𝑠 R | dom f 0 𝑔 R Fin = f Base S 𝑠 R | x dom R | f x 0 R x Fin
35 4 34 eqtrid R Fn I I V f Base P | dom f 0 𝑔 R Fin = f Base S 𝑠 R | x dom R | f x 0 R x Fin
36 fnex R Fn I I V R V
37 eqid f Base S 𝑠 R | x dom R | f x 0 R x Fin = f Base S 𝑠 R | x dom R | f x 0 R x Fin
38 37 dsmmbase R V f Base S 𝑠 R | x dom R | f x 0 R x Fin = Base S m R
39 36 38 syl R Fn I I V f Base S 𝑠 R | x dom R | f x 0 R x Fin = Base S m R
40 35 39 eqtrd R Fn I I V f Base P | dom f 0 𝑔 R Fin = Base S m R
41 2 40 eqtrid R Fn I I V B = Base S m R