Metamath Proof Explorer


Theorem dsmmbase

Description: Base set of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Hypothesis dsmmval.b B = f Base S 𝑠 R | x dom R | f x 0 R x Fin
Assertion dsmmbase R V B = Base S m R

Proof

Step Hyp Ref Expression
1 dsmmval.b B = f Base S 𝑠 R | x dom R | f x 0 R x Fin
2 elex R V R V
3 1 ssrab3 B Base S 𝑠 R
4 eqid S 𝑠 R 𝑠 B = S 𝑠 R 𝑠 B
5 eqid Base S 𝑠 R = Base S 𝑠 R
6 4 5 ressbas2 B Base S 𝑠 R B = Base S 𝑠 R 𝑠 B
7 3 6 ax-mp B = Base S 𝑠 R 𝑠 B
8 1 dsmmval R V S m R = S 𝑠 R 𝑠 B
9 8 fveq2d R V Base S m R = Base S 𝑠 R 𝑠 B
10 7 9 eqtr4id R V B = Base S m R
11 2 10 syl R V B = Base S m R