Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Direct sum of left modules
dsmmbase
Next ⟩
dsmmval2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dsmmbase
Description:
Base set of the module direct sum.
(Contributed by
Stefan O'Rear
, 7-Jan-2015)
Ref
Expression
Hypothesis
dsmmval.b
⊢
B
=
f
∈
Base
S
⨉
𝑠
R
|
x
∈
dom
⁡
R
|
f
⁡
x
≠
0
R
⁡
x
∈
Fin
Assertion
dsmmbase
⊢
R
∈
V
→
B
=
Base
S
⊕
m
R
Proof
Step
Hyp
Ref
Expression
1
dsmmval.b
⊢
B
=
f
∈
Base
S
⨉
𝑠
R
|
x
∈
dom
⁡
R
|
f
⁡
x
≠
0
R
⁡
x
∈
Fin
2
elex
⊢
R
∈
V
→
R
∈
V
3
1
ssrab3
⊢
B
⊆
Base
S
⨉
𝑠
R
4
eqid
⊢
S
⨉
𝑠
R
↾
𝑠
B
=
S
⨉
𝑠
R
↾
𝑠
B
5
eqid
⊢
Base
S
⨉
𝑠
R
=
Base
S
⨉
𝑠
R
6
4
5
ressbas2
⊢
B
⊆
Base
S
⨉
𝑠
R
→
B
=
Base
S
⨉
𝑠
R
↾
𝑠
B
7
3
6
ax-mp
⊢
B
=
Base
S
⨉
𝑠
R
↾
𝑠
B
8
1
dsmmval
⊢
R
∈
V
→
S
⊕
m
R
=
S
⨉
𝑠
R
↾
𝑠
B
9
8
fveq2d
⊢
R
∈
V
→
Base
S
⊕
m
R
=
Base
S
⨉
𝑠
R
↾
𝑠
B
10
7
9
eqtr4id
⊢
R
∈
V
→
B
=
Base
S
⊕
m
R
11
2
10
syl
⊢
R
∈
V
→
B
=
Base
S
⊕
m
R