Metamath Proof Explorer


Theorem dsmmelbas

Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmelbas.p P = S 𝑠 R
dsmmelbas.c C = S m R
dsmmelbas.b B = Base P
dsmmelbas.h H = Base C
dsmmelbas.i φ I V
dsmmelbas.r φ R Fn I
Assertion dsmmelbas φ X H X B a I | X a 0 R a Fin

Proof

Step Hyp Ref Expression
1 dsmmelbas.p P = S 𝑠 R
2 dsmmelbas.c C = S m R
3 dsmmelbas.b B = Base P
4 dsmmelbas.h H = Base C
5 dsmmelbas.i φ I V
6 dsmmelbas.r φ R Fn I
7 2 fveq2i Base C = Base S m R
8 4 7 eqtri H = Base S m R
9 fnex R Fn I I V R V
10 6 5 9 syl2anc φ R V
11 eqid b Base S 𝑠 R | a dom R | b a 0 R a Fin = b Base S 𝑠 R | a dom R | b a 0 R a Fin
12 11 dsmmbase R V b Base S 𝑠 R | a dom R | b a 0 R a Fin = Base S m R
13 10 12 syl φ b Base S 𝑠 R | a dom R | b a 0 R a Fin = Base S m R
14 8 13 eqtr4id φ H = b Base S 𝑠 R | a dom R | b a 0 R a Fin
15 14 eleq2d φ X H X b Base S 𝑠 R | a dom R | b a 0 R a Fin
16 fveq1 b = X b a = X a
17 16 neeq1d b = X b a 0 R a X a 0 R a
18 17 rabbidv b = X a dom R | b a 0 R a = a dom R | X a 0 R a
19 18 eleq1d b = X a dom R | b a 0 R a Fin a dom R | X a 0 R a Fin
20 19 elrab X b Base S 𝑠 R | a dom R | b a 0 R a Fin X Base S 𝑠 R a dom R | X a 0 R a Fin
21 1 fveq2i Base P = Base S 𝑠 R
22 3 21 eqtr2i Base S 𝑠 R = B
23 22 eleq2i X Base S 𝑠 R X B
24 23 a1i φ X Base S 𝑠 R X B
25 fndm R Fn I dom R = I
26 rabeq dom R = I a dom R | X a 0 R a = a I | X a 0 R a
27 6 25 26 3syl φ a dom R | X a 0 R a = a I | X a 0 R a
28 27 eleq1d φ a dom R | X a 0 R a Fin a I | X a 0 R a Fin
29 24 28 anbi12d φ X Base S 𝑠 R a dom R | X a 0 R a Fin X B a I | X a 0 R a Fin
30 20 29 syl5bb φ X b Base S 𝑠 R | a dom R | b a 0 R a Fin X B a I | X a 0 R a Fin
31 15 30 bitrd φ X H X B a I | X a 0 R a Fin