Metamath Proof Explorer


Theorem dsmmlmod

Description: The direct sum of a family of modules is a module. See also the remark in Lang p. 128. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmlss.i φ I W
dsmmlss.s φ S Ring
dsmmlss.r φ R : I LMod
dsmmlss.k φ x I Scalar R x = S
dsmmlmod.c C = S m R
Assertion dsmmlmod φ C LMod

Proof

Step Hyp Ref Expression
1 dsmmlss.i φ I W
2 dsmmlss.s φ S Ring
3 dsmmlss.r φ R : I LMod
4 dsmmlss.k φ x I Scalar R x = S
5 dsmmlmod.c C = S m R
6 eqid S 𝑠 R = S 𝑠 R
7 6 2 1 3 4 prdslmodd φ S 𝑠 R LMod
8 eqid LSubSp S 𝑠 R = LSubSp S 𝑠 R
9 eqid Base S m R = Base S m R
10 1 2 3 4 6 8 9 dsmmlss φ Base S m R LSubSp S 𝑠 R
11 9 dsmmval2 S m R = S 𝑠 R 𝑠 Base S m R
12 5 11 eqtri C = S 𝑠 R 𝑠 Base S m R
13 12 8 lsslmod S 𝑠 R LMod Base S m R LSubSp S 𝑠 R C LMod
14 7 10 13 syl2anc φ C LMod