Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmlss.i |
|
2 |
|
dsmmlss.s |
|
3 |
|
dsmmlss.r |
|
4 |
|
dsmmlss.k |
|
5 |
|
dsmmlss.p |
|
6 |
|
dsmmlss.u |
|
7 |
|
dsmmlss.h |
|
8 |
|
lmodgrp |
|
9 |
8
|
ssriv |
|
10 |
|
fss |
|
11 |
3 9 10
|
sylancl |
|
12 |
5 7 1 2 11
|
dsmmsubg |
|
13 |
5 2 1 3 4
|
prdslmodd |
|
14 |
13
|
adantr |
|
15 |
|
simprl |
|
16 |
|
simprr |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
3
|
ffnd |
|
20 |
5 17 18 7 1 19
|
dsmmelbas |
|
21 |
20
|
adantr |
|
22 |
16 21
|
mpbid |
|
23 |
22
|
simpld |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
18 24 25 26
|
lmodvscl |
|
28 |
14 15 23 27
|
syl3anc |
|
29 |
22
|
simprd |
|
30 |
|
eqid |
|
31 |
2
|
ad2antrr |
|
32 |
1
|
ad2antrr |
|
33 |
19
|
ad2antrr |
|
34 |
3 1
|
fexd |
|
35 |
5 2 34
|
prdssca |
|
36 |
35
|
fveq2d |
|
37 |
36
|
eleq2d |
|
38 |
37
|
biimpar |
|
39 |
38
|
adantrr |
|
40 |
39
|
adantr |
|
41 |
23
|
adantr |
|
42 |
|
simpr |
|
43 |
5 18 25 30 31 32 33 40 41 42
|
prdsvscafval |
|
44 |
43
|
adantrr |
|
45 |
3
|
ffvelrnda |
|
46 |
45
|
adantlr |
|
47 |
|
simplrl |
|
48 |
35
|
adantr |
|
49 |
4 48
|
eqtrd |
|
50 |
49
|
fveq2d |
|
51 |
50
|
adantlr |
|
52 |
47 51
|
eleqtrrd |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
53 54 55 56
|
lmodvs0 |
|
58 |
46 52 57
|
syl2anc |
|
59 |
|
oveq2 |
|
60 |
59
|
eqeq1d |
|
61 |
58 60
|
syl5ibrcom |
|
62 |
61
|
impr |
|
63 |
44 62
|
eqtrd |
|
64 |
63
|
expr |
|
65 |
64
|
necon3d |
|
66 |
65
|
ss2rabdv |
|
67 |
29 66
|
ssfid |
|
68 |
5 17 18 7 1 19
|
dsmmelbas |
|
69 |
68
|
adantr |
|
70 |
28 67 69
|
mpbir2and |
|
71 |
70
|
ralrimivva |
|
72 |
24 26 18 25 6
|
islss4 |
|
73 |
13 72
|
syl |
|
74 |
12 71 73
|
mpbir2and |
|