Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmsubg.p |
|
2 |
|
dsmmsubg.h |
|
3 |
|
dsmmsubg.i |
|
4 |
|
dsmmsubg.s |
|
5 |
|
dsmmsubg.r |
|
6 |
|
eqidd |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
5 3
|
fexd |
|
10 |
|
eqid |
|
11 |
10
|
dsmmbase |
|
12 |
9 11
|
syl |
|
13 |
|
ssrab2 |
|
14 |
12 13
|
eqsstrrdi |
|
15 |
1
|
fveq2i |
|
16 |
14 2 15
|
3sstr4g |
|
17 |
|
grpmnd |
|
18 |
17
|
ssriv |
|
19 |
|
fss |
|
20 |
5 18 19
|
sylancl |
|
21 |
|
eqid |
|
22 |
1 2 3 4 20 21
|
dsmm0cl |
|
23 |
3
|
3ad2ant1 |
|
24 |
4
|
3ad2ant1 |
|
25 |
20
|
3ad2ant1 |
|
26 |
|
simp2 |
|
27 |
|
simp3 |
|
28 |
|
eqid |
|
29 |
1 2 23 24 25 26 27 28
|
dsmmacl |
|
30 |
1 3 4 5
|
prdsgrpd |
|
31 |
30
|
adantr |
|
32 |
16
|
sselda |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33 34
|
grpinvcl |
|
36 |
31 32 35
|
syl2anc |
|
37 |
|
simpr |
|
38 |
|
eqid |
|
39 |
3
|
adantr |
|
40 |
5
|
ffnd |
|
41 |
40
|
adantr |
|
42 |
1 38 33 2 39 41
|
dsmmelbas |
|
43 |
37 42
|
mpbid |
|
44 |
43
|
simprd |
|
45 |
3
|
ad2antrr |
|
46 |
4
|
ad2antrr |
|
47 |
5
|
ad2antrr |
|
48 |
32
|
adantr |
|
49 |
|
simpr |
|
50 |
1 45 46 47 33 34 48 49
|
prdsinvgd2 |
|
51 |
50
|
adantrr |
|
52 |
|
fveq2 |
|
53 |
52
|
ad2antll |
|
54 |
5
|
ffvelrnda |
|
55 |
54
|
adantlr |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
56 57
|
grpinvid |
|
59 |
55 58
|
syl |
|
60 |
59
|
adantrr |
|
61 |
51 53 60
|
3eqtrd |
|
62 |
61
|
expr |
|
63 |
62
|
necon3d |
|
64 |
63
|
ss2rabdv |
|
65 |
44 64
|
ssfid |
|
66 |
1 38 33 2 39 41
|
dsmmelbas |
|
67 |
36 65 66
|
mpbir2and |
|
68 |
6 7 8 16 22 29 67 30
|
issubgrpd2 |
|