Metamath Proof Explorer


Theorem dsmmsubg

Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmsubg.p P = S 𝑠 R
dsmmsubg.h H = Base S m R
dsmmsubg.i φ I W
dsmmsubg.s φ S V
dsmmsubg.r φ R : I Grp
Assertion dsmmsubg φ H SubGrp P

Proof

Step Hyp Ref Expression
1 dsmmsubg.p P = S 𝑠 R
2 dsmmsubg.h H = Base S m R
3 dsmmsubg.i φ I W
4 dsmmsubg.s φ S V
5 dsmmsubg.r φ R : I Grp
6 eqidd φ P 𝑠 H = P 𝑠 H
7 eqidd φ 0 P = 0 P
8 eqidd φ + P = + P
9 5 3 fexd φ R V
10 eqid a Base S 𝑠 R | b dom R | a b 0 R b Fin = a Base S 𝑠 R | b dom R | a b 0 R b Fin
11 10 dsmmbase R V a Base S 𝑠 R | b dom R | a b 0 R b Fin = Base S m R
12 9 11 syl φ a Base S 𝑠 R | b dom R | a b 0 R b Fin = Base S m R
13 ssrab2 a Base S 𝑠 R | b dom R | a b 0 R b Fin Base S 𝑠 R
14 12 13 eqsstrrdi φ Base S m R Base S 𝑠 R
15 1 fveq2i Base P = Base S 𝑠 R
16 14 2 15 3sstr4g φ H Base P
17 grpmnd a Grp a Mnd
18 17 ssriv Grp Mnd
19 fss R : I Grp Grp Mnd R : I Mnd
20 5 18 19 sylancl φ R : I Mnd
21 eqid 0 P = 0 P
22 1 2 3 4 20 21 dsmm0cl φ 0 P H
23 3 3ad2ant1 φ a H b H I W
24 4 3ad2ant1 φ a H b H S V
25 20 3ad2ant1 φ a H b H R : I Mnd
26 simp2 φ a H b H a H
27 simp3 φ a H b H b H
28 eqid + P = + P
29 1 2 23 24 25 26 27 28 dsmmacl φ a H b H a + P b H
30 1 3 4 5 prdsgrpd φ P Grp
31 30 adantr φ a H P Grp
32 16 sselda φ a H a Base P
33 eqid Base P = Base P
34 eqid inv g P = inv g P
35 33 34 grpinvcl P Grp a Base P inv g P a Base P
36 31 32 35 syl2anc φ a H inv g P a Base P
37 simpr φ a H a H
38 eqid S m R = S m R
39 3 adantr φ a H I W
40 5 ffnd φ R Fn I
41 40 adantr φ a H R Fn I
42 1 38 33 2 39 41 dsmmelbas φ a H a H a Base P b I | a b 0 R b Fin
43 37 42 mpbid φ a H a Base P b I | a b 0 R b Fin
44 43 simprd φ a H b I | a b 0 R b Fin
45 3 ad2antrr φ a H b I I W
46 4 ad2antrr φ a H b I S V
47 5 ad2antrr φ a H b I R : I Grp
48 32 adantr φ a H b I a Base P
49 simpr φ a H b I b I
50 1 45 46 47 33 34 48 49 prdsinvgd2 φ a H b I inv g P a b = inv g R b a b
51 50 adantrr φ a H b I a b = 0 R b inv g P a b = inv g R b a b
52 fveq2 a b = 0 R b inv g R b a b = inv g R b 0 R b
53 52 ad2antll φ a H b I a b = 0 R b inv g R b a b = inv g R b 0 R b
54 5 ffvelrnda φ b I R b Grp
55 54 adantlr φ a H b I R b Grp
56 eqid 0 R b = 0 R b
57 eqid inv g R b = inv g R b
58 56 57 grpinvid R b Grp inv g R b 0 R b = 0 R b
59 55 58 syl φ a H b I inv g R b 0 R b = 0 R b
60 59 adantrr φ a H b I a b = 0 R b inv g R b 0 R b = 0 R b
61 51 53 60 3eqtrd φ a H b I a b = 0 R b inv g P a b = 0 R b
62 61 expr φ a H b I a b = 0 R b inv g P a b = 0 R b
63 62 necon3d φ a H b I inv g P a b 0 R b a b 0 R b
64 63 ss2rabdv φ a H b I | inv g P a b 0 R b b I | a b 0 R b
65 44 64 ssfid φ a H b I | inv g P a b 0 R b Fin
66 1 38 33 2 39 41 dsmmelbas φ a H inv g P a H inv g P a Base P b I | inv g P a b 0 R b Fin
67 36 65 66 mpbir2and φ a H inv g P a H
68 6 7 8 16 22 29 67 30 issubgrpd2 φ H SubGrp P