Metamath Proof Explorer


Theorem dsmmval

Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Hypothesis dsmmval.b B = f Base S 𝑠 R | x dom R | f x 0 R x Fin
Assertion dsmmval R V S m R = S 𝑠 R 𝑠 B

Proof

Step Hyp Ref Expression
1 dsmmval.b B = f Base S 𝑠 R | x dom R | f x 0 R x Fin
2 elex R V R V
3 oveq12 s = S r = R s 𝑠 r = S 𝑠 R
4 eqid s 𝑠 r = s 𝑠 r
5 vex s V
6 5 a1i s = S r = R s V
7 vex r V
8 7 a1i s = S r = R r V
9 eqid Base s 𝑠 r = Base s 𝑠 r
10 eqidd s = S r = R dom r = dom r
11 4 6 8 9 10 prdsbas s = S r = R Base s 𝑠 r = x dom r Base r x
12 3 fveq2d s = S r = R Base s 𝑠 r = Base S 𝑠 R
13 11 12 eqtr3d s = S r = R x dom r Base r x = Base S 𝑠 R
14 simpr s = S r = R r = R
15 14 dmeqd s = S r = R dom r = dom R
16 14 fveq1d s = S r = R r x = R x
17 16 fveq2d s = S r = R 0 r x = 0 R x
18 17 neeq2d s = S r = R f x 0 r x f x 0 R x
19 15 18 rabeqbidv s = S r = R x dom r | f x 0 r x = x dom R | f x 0 R x
20 19 eleq1d s = S r = R x dom r | f x 0 r x Fin x dom R | f x 0 R x Fin
21 13 20 rabeqbidv s = S r = R f x dom r Base r x | x dom r | f x 0 r x Fin = f Base S 𝑠 R | x dom R | f x 0 R x Fin
22 21 1 eqtr4di s = S r = R f x dom r Base r x | x dom r | f x 0 r x Fin = B
23 3 22 oveq12d s = S r = R s 𝑠 r 𝑠 f x dom r Base r x | x dom r | f x 0 r x Fin = S 𝑠 R 𝑠 B
24 df-dsmm m = s V , r V s 𝑠 r 𝑠 f x dom r Base r x | x dom r | f x 0 r x Fin
25 ovex S 𝑠 R 𝑠 B V
26 23 24 25 ovmpoa S V R V S m R = S 𝑠 R 𝑠 B
27 reldmdsmm Rel dom m
28 27 ovprc1 ¬ S V S m R =
29 ress0 𝑠 B =
30 28 29 eqtr4di ¬ S V S m R = 𝑠 B
31 reldmprds Rel dom 𝑠
32 31 ovprc1 ¬ S V S 𝑠 R =
33 32 oveq1d ¬ S V S 𝑠 R 𝑠 B = 𝑠 B
34 30 33 eqtr4d ¬ S V S m R = S 𝑠 R 𝑠 B
35 34 adantr ¬ S V R V S m R = S 𝑠 R 𝑠 B
36 26 35 pm2.61ian R V S m R = S 𝑠 R 𝑠 B
37 2 36 syl R V S m R = S 𝑠 R 𝑠 B