Metamath Proof Explorer


Theorem dsmmval2

Description: Self-referential definition of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypothesis dsmmval2.b B = Base S m R
Assertion dsmmval2 S m R = S 𝑠 R 𝑠 B

Proof

Step Hyp Ref Expression
1 dsmmval2.b B = Base S m R
2 ssrab2 f Base S 𝑠 R | x dom R | f x 0 R x Fin Base S 𝑠 R
3 eqid S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin = S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin
4 eqid Base S 𝑠 R = Base S 𝑠 R
5 3 4 ressbas2 f Base S 𝑠 R | x dom R | f x 0 R x Fin Base S 𝑠 R f Base S 𝑠 R | x dom R | f x 0 R x Fin = Base S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin
6 2 5 ax-mp f Base S 𝑠 R | x dom R | f x 0 R x Fin = Base S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin
7 6 oveq2i S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin = S 𝑠 R 𝑠 Base S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin
8 eqid f Base S 𝑠 R | x dom R | f x 0 R x Fin = f Base S 𝑠 R | x dom R | f x 0 R x Fin
9 8 dsmmval R V S m R = S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin
10 9 fveq2d R V Base S m R = Base S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin
11 10 oveq2d R V S 𝑠 R 𝑠 Base S m R = S 𝑠 R 𝑠 Base S 𝑠 R 𝑠 f Base S 𝑠 R | x dom R | f x 0 R x Fin
12 7 9 11 3eqtr4a R V S m R = S 𝑠 R 𝑠 Base S m R
13 ress0 𝑠 Base S m R =
14 13 eqcomi = 𝑠 Base S m R
15 reldmdsmm Rel dom m
16 15 ovprc2 ¬ R V S m R =
17 reldmprds Rel dom 𝑠
18 17 ovprc2 ¬ R V S 𝑠 R =
19 18 oveq1d ¬ R V S 𝑠 R 𝑠 Base S m R = 𝑠 Base S m R
20 14 16 19 3eqtr4a ¬ R V S m R = S 𝑠 R 𝑠 Base S m R
21 12 20 pm2.61i S m R = S 𝑠 R 𝑠 Base S m R
22 1 oveq2i S 𝑠 R 𝑠 B = S 𝑠 R 𝑠 Base S m R
23 21 22 eqtr4i S m R = S 𝑠 R 𝑠 B