Step |
Hyp |
Ref |
Expression |
1 |
|
dstregt0.1 |
|
2 |
1
|
eldifad |
|
3 |
2
|
imcld |
|
4 |
3
|
recnd |
|
5 |
1
|
eldifbd |
|
6 |
|
reim0b |
|
7 |
2 6
|
syl |
|
8 |
5 7
|
mtbid |
|
9 |
8
|
neqned |
|
10 |
4 9
|
absrpcld |
|
11 |
10
|
rphalfcld |
|
12 |
2
|
adantr |
|
13 |
|
recn |
|
14 |
13
|
adantl |
|
15 |
12 14
|
imsubd |
|
16 |
|
simpr |
|
17 |
16
|
reim0d |
|
18 |
17
|
oveq2d |
|
19 |
4
|
adantr |
|
20 |
19
|
subid1d |
|
21 |
15 18 20
|
3eqtrrd |
|
22 |
21
|
fveq2d |
|
23 |
22
|
oveq1d |
|
24 |
21 19
|
eqeltrrd |
|
25 |
24
|
abscld |
|
26 |
25
|
rehalfcld |
|
27 |
12 14
|
subcld |
|
28 |
27
|
abscld |
|
29 |
9
|
adantr |
|
30 |
21 29
|
eqnetrrd |
|
31 |
24 30
|
absrpcld |
|
32 |
|
rphalflt |
|
33 |
31 32
|
syl |
|
34 |
|
absimle |
|
35 |
27 34
|
syl |
|
36 |
26 25 28 33 35
|
ltletrd |
|
37 |
23 36
|
eqbrtrd |
|
38 |
37
|
ralrimiva |
|
39 |
|
breq1 |
|
40 |
39
|
ralbidv |
|
41 |
40
|
rspcev |
|
42 |
11 38 41
|
syl2anc |
|