Metamath Proof Explorer


Theorem dtruALT2

Description: Alternate proof of dtru using ax-pow instead of ax-pr . (Contributed by NM, 7-Nov-2006) Avoid ax-13 . (Revised by Gino Giotto, 5-Sep-2023) Avoid ax-12 . (Revised by Rohan Ridenour, 9-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dtruALT2 ¬ x x = y

Proof

Step Hyp Ref Expression
1 elALT2 w x w
2 ax-nul z x ¬ x z
3 elequ1 x = w x z w z
4 3 notbid x = w ¬ x z ¬ w z
5 4 spw x ¬ x z ¬ x z
6 2 5 eximii z ¬ x z
7 exdistrv w z x w ¬ x z w x w z ¬ x z
8 1 6 7 mpbir2an w z x w ¬ x z
9 ax9v2 w = z x w x z
10 9 com12 x w w = z x z
11 10 con3dimp x w ¬ x z ¬ w = z
12 11 2eximi w z x w ¬ x z w z ¬ w = z
13 equequ2 z = y w = z w = y
14 13 notbid z = y ¬ w = z ¬ w = y
15 ax7v1 x = w x = y w = y
16 15 con3d x = w ¬ w = y ¬ x = y
17 16 spimevw ¬ w = y x ¬ x = y
18 14 17 syl6bi z = y ¬ w = z x ¬ x = y
19 ax7v1 x = z x = y z = y
20 19 con3d x = z ¬ z = y ¬ x = y
21 20 spimevw ¬ z = y x ¬ x = y
22 21 a1d ¬ z = y ¬ w = z x ¬ x = y
23 18 22 pm2.61i ¬ w = z x ¬ x = y
24 23 exlimivv w z ¬ w = z x ¬ x = y
25 8 12 24 mp2b x ¬ x = y
26 exnal x ¬ x = y ¬ x x = y
27 25 26 mpbi ¬ x x = y