Metamath Proof Explorer


Theorem dtruALT2

Description: Alternate proof of dtru using ax-pr instead of ax-pow . (Contributed by Mario Carneiro, 31-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dtruALT2 ¬ x x = y

Proof

Step Hyp Ref Expression
1 0inp0 y = ¬ y =
2 snex V
3 eqeq2 x = y = x y =
4 3 notbid x = ¬ y = x ¬ y =
5 2 4 spcev ¬ y = x ¬ y = x
6 1 5 syl y = x ¬ y = x
7 0ex V
8 eqeq2 x = y = x y =
9 8 notbid x = ¬ y = x ¬ y =
10 7 9 spcev ¬ y = x ¬ y = x
11 6 10 pm2.61i x ¬ y = x
12 exnal x ¬ y = x ¬ x y = x
13 eqcom y = x x = y
14 13 albii x y = x x x = y
15 12 14 xchbinx x ¬ y = x ¬ x x = y
16 11 15 mpbi ¬ x x = y