Metamath Proof Explorer


Theorem dv11cn

Description: Two functions defined on a ball whose derivatives are the same and which are equal at any given point C in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses dv11cn.x X = A ball abs R
dv11cn.a φ A
dv11cn.r φ R *
dv11cn.f φ F : X
dv11cn.g φ G : X
dv11cn.d φ dom F = X
dv11cn.e φ D F = D G
dv11cn.c φ C X
dv11cn.p φ F C = G C
Assertion dv11cn φ F = G

Proof

Step Hyp Ref Expression
1 dv11cn.x X = A ball abs R
2 dv11cn.a φ A
3 dv11cn.r φ R *
4 dv11cn.f φ F : X
5 dv11cn.g φ G : X
6 dv11cn.d φ dom F = X
7 dv11cn.e φ D F = D G
8 dv11cn.c φ C X
9 dv11cn.p φ F C = G C
10 4 ffnd φ F Fn X
11 5 ffnd φ G Fn X
12 1 ovexi X V
13 12 a1i φ X V
14 inidm X X = X
15 10 11 13 13 14 offn φ F f G Fn X
16 0cn 0
17 fnconstg 0 X × 0 Fn X
18 16 17 mp1i φ X × 0 Fn X
19 subcl x y x y
20 19 adantl φ x y x y
21 20 4 5 13 13 14 off φ F f G : X
22 21 ffvelrnda φ x X F f G x
23 8 anim1ci φ x X x X C X
24 cnxmet abs ∞Met
25 blssm abs ∞Met A R * A ball abs R
26 24 2 3 25 mp3an2i φ A ball abs R
27 1 26 eqsstrid φ X
28 4 ffvelrnda φ x X F x
29 5 ffvelrnda φ x X G x
30 4 feqmptd φ F = x X F x
31 5 feqmptd φ G = x X G x
32 13 28 29 30 31 offval2 φ F f G = x X F x G x
33 32 oveq2d φ D F f G = dx X F x G x d x
34 cnelprrecn
35 34 a1i φ
36 fvexd φ x X F x V
37 30 oveq2d φ D F = dx X F x d x
38 dvfcn F : dom F
39 6 feq2d φ F : dom F F : X
40 38 39 mpbii φ F : X
41 40 feqmptd φ D F = x X F x
42 37 41 eqtr3d φ dx X F x d x = x X F x
43 31 oveq2d φ D G = dx X G x d x
44 7 41 43 3eqtr3rd φ dx X G x d x = x X F x
45 35 28 36 42 29 36 44 dvmptsub φ dx X F x G x d x = x X F x F x
46 40 ffvelrnda φ x X F x
47 46 subidd φ x X F x F x = 0
48 47 mpteq2dva φ x X F x F x = x X 0
49 fconstmpt X × 0 = x X 0
50 48 49 eqtr4di φ x X F x F x = X × 0
51 33 45 50 3eqtrd φ D F f G = X × 0
52 51 dmeqd φ dom F f G = dom X × 0
53 snnzg 0 0
54 dmxp 0 dom X × 0 = X
55 16 53 54 mp2b dom X × 0 = X
56 52 55 eqtrdi φ dom F f G = X
57 eqimss2 dom F f G = X X dom F f G
58 56 57 syl φ X dom F f G
59 0red φ 0
60 51 fveq1d φ F f G x = X × 0 x
61 c0ex 0 V
62 61 fvconst2 x X X × 0 x = 0
63 60 62 sylan9eq φ x X F f G x = 0
64 63 abs00bd φ x X F f G x = 0
65 0le0 0 0
66 64 65 eqbrtrdi φ x X F f G x 0
67 27 21 2 3 1 58 59 66 dvlipcn φ x X C X F f G x F f G C 0 x C
68 23 67 syldan φ x X F f G x F f G C 0 x C
69 32 fveq1d φ F f G C = x X F x G x C
70 fveq2 x = C F x = F C
71 fveq2 x = C G x = G C
72 70 71 oveq12d x = C F x G x = F C G C
73 eqid x X F x G x = x X F x G x
74 ovex F C G C V
75 72 73 74 fvmpt C X x X F x G x C = F C G C
76 8 75 syl φ x X F x G x C = F C G C
77 4 8 ffvelrnd φ F C
78 77 9 subeq0bd φ F C G C = 0
79 69 76 78 3eqtrd φ F f G C = 0
80 79 adantr φ x X F f G C = 0
81 80 oveq2d φ x X F f G x F f G C = F f G x 0
82 22 subid1d φ x X F f G x 0 = F f G x
83 81 82 eqtrd φ x X F f G x F f G C = F f G x
84 83 fveq2d φ x X F f G x F f G C = F f G x
85 27 sselda φ x X x
86 27 8 sseldd φ C
87 86 adantr φ x X C
88 85 87 subcld φ x X x C
89 88 abscld φ x X x C
90 89 recnd φ x X x C
91 90 mul02d φ x X 0 x C = 0
92 68 84 91 3brtr3d φ x X F f G x 0
93 22 absge0d φ x X 0 F f G x
94 22 abscld φ x X F f G x
95 0re 0
96 letri3 F f G x 0 F f G x = 0 F f G x 0 0 F f G x
97 94 95 96 sylancl φ x X F f G x = 0 F f G x 0 0 F f G x
98 92 93 97 mpbir2and φ x X F f G x = 0
99 22 98 abs00d φ x X F f G x = 0
100 62 adantl φ x X X × 0 x = 0
101 99 100 eqtr4d φ x X F f G x = X × 0 x
102 15 18 101 eqfnfvd φ F f G = X × 0
103 ofsubeq0 X V F : X G : X F f G = X × 0 F = G
104 12 4 5 103 mp3an2i φ F f G = X × 0 F = G
105 102 104 mpbid φ F = G