Metamath Proof Explorer


Theorem dvafset

Description: The constructed partial vector space A for a lattice K . (Contributed by NM, 8-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypothesis dvaset.h H = LHyp K
Assertion dvafset K V DVecA K = w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f

Proof

Step Hyp Ref Expression
1 dvaset.h H = LHyp K
2 elex K V K V
3 fveq2 k = K LHyp k = LHyp K
4 3 1 eqtr4di k = K LHyp k = H
5 fveq2 k = K LTrn k = LTrn K
6 5 fveq1d k = K LTrn k w = LTrn K w
7 6 opeq2d k = K Base ndx LTrn k w = Base ndx LTrn K w
8 eqidd k = K f g = f g
9 6 6 8 mpoeq123dv k = K f LTrn k w , g LTrn k w f g = f LTrn K w , g LTrn K w f g
10 9 opeq2d k = K + ndx f LTrn k w , g LTrn k w f g = + ndx f LTrn K w , g LTrn K w f g
11 fveq2 k = K EDRing k = EDRing K
12 11 fveq1d k = K EDRing k w = EDRing K w
13 12 opeq2d k = K Scalar ndx EDRing k w = Scalar ndx EDRing K w
14 7 10 13 tpeq123d k = K Base ndx LTrn k w + ndx f LTrn k w , g LTrn k w f g Scalar ndx EDRing k w = Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w
15 fveq2 k = K TEndo k = TEndo K
16 15 fveq1d k = K TEndo k w = TEndo K w
17 eqidd k = K s f = s f
18 16 6 17 mpoeq123dv k = K s TEndo k w , f LTrn k w s f = s TEndo K w , f LTrn K w s f
19 18 opeq2d k = K ndx s TEndo k w , f LTrn k w s f = ndx s TEndo K w , f LTrn K w s f
20 19 sneqd k = K ndx s TEndo k w , f LTrn k w s f = ndx s TEndo K w , f LTrn K w s f
21 14 20 uneq12d k = K Base ndx LTrn k w + ndx f LTrn k w , g LTrn k w f g Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w s f = Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f
22 4 21 mpteq12dv k = K w LHyp k Base ndx LTrn k w + ndx f LTrn k w , g LTrn k w f g Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w s f = w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f
23 df-dveca DVecA = k V w LHyp k Base ndx LTrn k w + ndx f LTrn k w , g LTrn k w f g Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w s f
24 22 23 1 mptfvmpt K V DVecA K = w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f
25 2 24 syl K V DVecA K = w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f