Metamath Proof Explorer


Theorem dvbssntr

Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvcl.s φ S
dvcl.f φ F : A
dvcl.a φ A S
dvbssntr.j J = K 𝑡 S
dvbssntr.k K = TopOpen fld
Assertion dvbssntr φ dom F S int J A

Proof

Step Hyp Ref Expression
1 dvcl.s φ S
2 dvcl.f φ F : A
3 dvcl.a φ A S
4 dvbssntr.j J = K 𝑡 S
5 dvbssntr.k K = TopOpen fld
6 4 5 dvfval S F : A A S S D F = x int J A x × z A x F z F x z x lim x S D F int J A ×
7 1 2 3 6 syl3anc φ S D F = x int J A x × z A x F z F x z x lim x S D F int J A ×
8 dmss S D F int J A × dom F S dom int J A ×
9 7 8 simpl2im φ dom F S dom int J A ×
10 dmxpss dom int J A × int J A
11 9 10 sstrdi φ dom F S int J A