Metamath Proof Explorer


Theorem dvcj

Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvcj F : X X D * F = * F

Proof

Step Hyp Ref Expression
1 dvf * F : dom * F
2 ffun * F : dom * F Fun * F
3 1 2 ax-mp Fun * F
4 simpll F : X X x dom F F : X
5 simplr F : X X x dom F X
6 simpr F : X X x dom F x dom F
7 4 5 6 dvcjbr F : X X x dom F x * F F x
8 funbrfv Fun * F x * F F x * F x = F x
9 3 7 8 mpsyl F : X X x dom F * F x = F x
10 9 mpteq2dva F : X X x dom F * F x = x dom F F x
11 cjf * :
12 fco * : F : X * F : X
13 11 12 mpan F : X * F : X
14 13 ad2antrr F : X X x dom * F * F : X
15 simplr F : X X x dom * F X
16 simpr F : X X x dom * F x dom * F
17 14 15 16 dvcjbr F : X X x dom * F x * * F * F x
18 vex x V
19 fvex * F x V
20 18 19 breldm x * * F * F x x dom * * F
21 17 20 syl F : X X x dom * F x dom * * F
22 21 ex F : X X x dom * F x dom * * F
23 22 ssrdv F : X X dom * F dom * * F
24 ffvelrn F : X x X F x
25 24 adantlr F : X X x X F x
26 25 cjcjd F : X X x X F x = F x
27 26 mpteq2dva F : X X x X F x = x X F x
28 25 cjcld F : X X x X F x
29 simpl F : X X F : X
30 29 feqmptd F : X X F = x X F x
31 11 a1i F : X X * :
32 31 feqmptd F : X X * = y y
33 fveq2 y = F x y = F x
34 25 30 32 33 fmptco F : X X * F = x X F x
35 fveq2 y = F x y = F x
36 28 34 32 35 fmptco F : X X * * F = x X F x
37 27 36 30 3eqtr4d F : X X * * F = F
38 37 oveq2d F : X X D * * F = D F
39 38 dmeqd F : X X dom * * F = dom F
40 23 39 sseqtrd F : X X dom * F dom F
41 fvex F x V
42 18 41 breldm x * F F x x dom * F
43 7 42 syl F : X X x dom F x dom * F
44 40 43 eqelssd F : X X dom * F = dom F
45 44 feq2d F : X X * F : dom * F * F : dom F
46 1 45 mpbii F : X X * F : dom F
47 46 feqmptd F : X X D * F = x dom F * F x
48 dvf F : dom F
49 48 ffvelrni x dom F F x
50 49 adantl F : X X x dom F F x
51 48 a1i F : X X F : dom F
52 51 feqmptd F : X X D F = x dom F F x
53 fveq2 y = F x y = F x
54 50 52 32 53 fmptco F : X X * F = x dom F F x
55 10 47 54 3eqtr4d F : X X D * F = * F