Step |
Hyp |
Ref |
Expression |
1 |
|
dvf |
|
2 |
|
ffun |
|
3 |
1 2
|
ax-mp |
|
4 |
|
simpll |
|
5 |
|
simplr |
|
6 |
|
simpr |
|
7 |
4 5 6
|
dvcjbr |
|
8 |
|
funbrfv |
|
9 |
3 7 8
|
mpsyl |
|
10 |
9
|
mpteq2dva |
|
11 |
|
cjf |
|
12 |
|
fco |
|
13 |
11 12
|
mpan |
|
14 |
13
|
ad2antrr |
|
15 |
|
simplr |
|
16 |
|
simpr |
|
17 |
14 15 16
|
dvcjbr |
|
18 |
|
vex |
|
19 |
|
fvex |
|
20 |
18 19
|
breldm |
|
21 |
17 20
|
syl |
|
22 |
21
|
ex |
|
23 |
22
|
ssrdv |
|
24 |
|
ffvelrn |
|
25 |
24
|
adantlr |
|
26 |
25
|
cjcjd |
|
27 |
26
|
mpteq2dva |
|
28 |
25
|
cjcld |
|
29 |
|
simpl |
|
30 |
29
|
feqmptd |
|
31 |
11
|
a1i |
|
32 |
31
|
feqmptd |
|
33 |
|
fveq2 |
|
34 |
25 30 32 33
|
fmptco |
|
35 |
|
fveq2 |
|
36 |
28 34 32 35
|
fmptco |
|
37 |
27 36 30
|
3eqtr4d |
|
38 |
37
|
oveq2d |
|
39 |
38
|
dmeqd |
|
40 |
23 39
|
sseqtrd |
|
41 |
|
fvex |
|
42 |
18 41
|
breldm |
|
43 |
7 42
|
syl |
|
44 |
40 43
|
eqelssd |
|
45 |
44
|
feq2d |
|
46 |
1 45
|
mpbii |
|
47 |
46
|
feqmptd |
|
48 |
|
dvf |
|
49 |
48
|
ffvelrni |
|
50 |
49
|
adantl |
|
51 |
48
|
a1i |
|
52 |
51
|
feqmptd |
|
53 |
|
fveq2 |
|
54 |
50 52 32 53
|
fmptco |
|
55 |
10 47 54
|
3eqtr4d |
|