| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcj.f |
|
| 2 |
|
dvcj.x |
|
| 3 |
|
dvcj.c |
|
| 4 |
|
ax-resscn |
|
| 5 |
4
|
a1i |
|
| 6 |
|
tgioo4 |
|
| 7 |
|
eqid |
|
| 8 |
5 1 2 6 7
|
dvbssntr |
|
| 9 |
8 3
|
sseldd |
|
| 10 |
2 4
|
sstrdi |
|
| 11 |
4
|
a1i |
|
| 12 |
|
simpl |
|
| 13 |
|
simpr |
|
| 14 |
11 12 13
|
dvbss |
|
| 15 |
1 2 14
|
syl2anc |
|
| 16 |
15 3
|
sseldd |
|
| 17 |
1 10 16
|
dvlem |
|
| 18 |
17
|
fmpttd |
|
| 19 |
|
ssidd |
|
| 20 |
7
|
cnfldtopon |
|
| 21 |
20
|
toponrestid |
|
| 22 |
|
dvf |
|
| 23 |
|
ffun |
|
| 24 |
|
funfvbrb |
|
| 25 |
22 23 24
|
mp2b |
|
| 26 |
3 25
|
sylib |
|
| 27 |
|
eqid |
|
| 28 |
6 7 27 5 1 2
|
eldv |
|
| 29 |
26 28
|
mpbid |
|
| 30 |
29
|
simprd |
|
| 31 |
|
cjcncf |
|
| 32 |
7
|
cncfcn1 |
|
| 33 |
31 32
|
eleqtri |
|
| 34 |
22
|
ffvelcdmi |
|
| 35 |
3 34
|
syl |
|
| 36 |
|
unicntop |
|
| 37 |
36
|
cncnpi |
|
| 38 |
33 35 37
|
sylancr |
|
| 39 |
18 19 7 21 30 38
|
limccnp |
|
| 40 |
|
cjf |
|
| 41 |
40
|
a1i |
|
| 42 |
41 17
|
cofmpt |
|
| 43 |
1
|
adantr |
|
| 44 |
|
eldifi |
|
| 45 |
44
|
adantl |
|
| 46 |
43 45
|
ffvelcdmd |
|
| 47 |
1 16
|
ffvelcdmd |
|
| 48 |
47
|
adantr |
|
| 49 |
46 48
|
subcld |
|
| 50 |
2
|
sselda |
|
| 51 |
44 50
|
sylan2 |
|
| 52 |
2 16
|
sseldd |
|
| 53 |
52
|
adantr |
|
| 54 |
51 53
|
resubcld |
|
| 55 |
54
|
recnd |
|
| 56 |
51
|
recnd |
|
| 57 |
53
|
recnd |
|
| 58 |
|
eldifsni |
|
| 59 |
58
|
adantl |
|
| 60 |
56 57 59
|
subne0d |
|
| 61 |
49 55 60
|
cjdivd |
|
| 62 |
|
cjsub |
|
| 63 |
46 48 62
|
syl2anc |
|
| 64 |
|
fvco3 |
|
| 65 |
1 44 64
|
syl2an |
|
| 66 |
|
fvco3 |
|
| 67 |
1 16 66
|
syl2anc |
|
| 68 |
67
|
adantr |
|
| 69 |
65 68
|
oveq12d |
|
| 70 |
63 69
|
eqtr4d |
|
| 71 |
54
|
cjred |
|
| 72 |
70 71
|
oveq12d |
|
| 73 |
61 72
|
eqtrd |
|
| 74 |
73
|
mpteq2dva |
|
| 75 |
42 74
|
eqtrd |
|
| 76 |
75
|
oveq1d |
|
| 77 |
39 76
|
eleqtrd |
|
| 78 |
|
eqid |
|
| 79 |
|
fco |
|
| 80 |
40 1 79
|
sylancr |
|
| 81 |
6 7 78 5 80 2
|
eldv |
|
| 82 |
9 77 81
|
mpbir2and |
|