Metamath Proof Explorer


Theorem dvcjbr

Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj . (This doesn't follow from dvcobr because * is not a function on the reals, and even if we used complex derivatives, * is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvcj.f φF:X
dvcj.x φX
dvcj.c φCdomF
Assertion dvcjbr φC*FFC

Proof

Step Hyp Ref Expression
1 dvcj.f φF:X
2 dvcj.x φX
3 dvcj.c φCdomF
4 ax-resscn
5 4 a1i φ
6 eqid TopOpenfld=TopOpenfld
7 6 tgioo2 topGenran.=TopOpenfld𝑡
8 5 1 2 7 6 dvbssntr φdomFinttopGenran.X
9 8 3 sseldd φCinttopGenran.X
10 2 4 sstrdi φX
11 4 a1i F:XX
12 simpl F:XXF:X
13 simpr F:XXX
14 11 12 13 dvbss F:XXdomFX
15 1 2 14 syl2anc φdomFX
16 15 3 sseldd φCX
17 1 10 16 dvlem φxXCFxFCxC
18 17 fmpttd φxXCFxFCxC:XC
19 ssidd φ
20 6 cnfldtopon TopOpenfldTopOn
21 20 toponrestid TopOpenfld=TopOpenfld𝑡
22 dvf F:domF
23 ffun F:domFFunF
24 funfvbrb FunFCdomFCFFC
25 22 23 24 mp2b CdomFCFFC
26 3 25 sylib φCFFC
27 eqid xXCFxFCxC=xXCFxFCxC
28 7 6 27 5 1 2 eldv φCFFCCinttopGenran.XFCxXCFxFCxClimC
29 26 28 mpbid φCinttopGenran.XFCxXCFxFCxClimC
30 29 simprd φFCxXCFxFCxClimC
31 cjcncf *:cn
32 6 cncfcn1 cn=TopOpenfldCnTopOpenfld
33 31 32 eleqtri *TopOpenfldCnTopOpenfld
34 22 ffvelcdmi CdomFFC
35 3 34 syl φFC
36 unicntop =TopOpenfld
37 36 cncnpi *TopOpenfldCnTopOpenfldFC*TopOpenfldCnPTopOpenfldFC
38 33 35 37 sylancr φ*TopOpenfldCnPTopOpenfldFC
39 18 19 6 21 30 38 limccnp φFC*xXCFxFCxClimC
40 cjf *:
41 40 a1i φ*:
42 41 17 cofmpt φ*xXCFxFCxC=xXCFxFCxC
43 1 adantr φxXCF:X
44 eldifi xXCxX
45 44 adantl φxXCxX
46 43 45 ffvelcdmd φxXCFx
47 1 16 ffvelcdmd φFC
48 47 adantr φxXCFC
49 46 48 subcld φxXCFxFC
50 2 sselda φxXx
51 44 50 sylan2 φxXCx
52 2 16 sseldd φC
53 52 adantr φxXCC
54 51 53 resubcld φxXCxC
55 54 recnd φxXCxC
56 51 recnd φxXCx
57 53 recnd φxXCC
58 eldifsni xXCxC
59 58 adantl φxXCxC
60 56 57 59 subne0d φxXCxC0
61 49 55 60 cjdivd φxXCFxFCxC=FxFCxC
62 cjsub FxFCFxFC=FxFC
63 46 48 62 syl2anc φxXCFxFC=FxFC
64 fvco3 F:XxX*Fx=Fx
65 1 44 64 syl2an φxXC*Fx=Fx
66 fvco3 F:XCX*FC=FC
67 1 16 66 syl2anc φ*FC=FC
68 67 adantr φxXC*FC=FC
69 65 68 oveq12d φxXC*Fx*FC=FxFC
70 63 69 eqtr4d φxXCFxFC=*Fx*FC
71 54 cjred φxXCxC=xC
72 70 71 oveq12d φxXCFxFCxC=*Fx*FCxC
73 61 72 eqtrd φxXCFxFCxC=*Fx*FCxC
74 73 mpteq2dva φxXCFxFCxC=xXC*Fx*FCxC
75 42 74 eqtrd φ*xXCFxFCxC=xXC*Fx*FCxC
76 75 oveq1d φ*xXCFxFCxClimC=xXC*Fx*FCxClimC
77 39 76 eleqtrd φFCxXC*Fx*FCxClimC
78 eqid xXC*Fx*FCxC=xXC*Fx*FCxC
79 fco *:F:X*F:X
80 40 1 79 sylancr φ*F:X
81 7 6 78 5 80 2 eldv φC*FFCCinttopGenran.XFCxXC*Fx*FCxClimC
82 9 77 81 mpbir2and φC*FFC