Metamath Proof Explorer


Theorem dvcjbr

Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj . (This doesn't follow from dvcobr because * is not a function on the reals, and even if we used complex derivatives, * is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvcj.f φ F : X
dvcj.x φ X
dvcj.c φ C dom F
Assertion dvcjbr φ C * F F C

Proof

Step Hyp Ref Expression
1 dvcj.f φ F : X
2 dvcj.x φ X
3 dvcj.c φ C dom F
4 ax-resscn
5 4 a1i φ
6 eqid TopOpen fld = TopOpen fld
7 6 tgioo2 topGen ran . = TopOpen fld 𝑡
8 5 1 2 7 6 dvbssntr φ dom F int topGen ran . X
9 8 3 sseldd φ C int topGen ran . X
10 2 4 sstrdi φ X
11 4 a1i F : X X
12 simpl F : X X F : X
13 simpr F : X X X
14 11 12 13 dvbss F : X X dom F X
15 1 2 14 syl2anc φ dom F X
16 15 3 sseldd φ C X
17 1 10 16 dvlem φ x X C F x F C x C
18 17 fmpttd φ x X C F x F C x C : X C
19 ssidd φ
20 6 cnfldtopon TopOpen fld TopOn
21 20 toponrestid TopOpen fld = TopOpen fld 𝑡
22 dvf F : dom F
23 ffun F : dom F Fun F
24 funfvbrb Fun F C dom F C F F C
25 22 23 24 mp2b C dom F C F F C
26 3 25 sylib φ C F F C
27 eqid x X C F x F C x C = x X C F x F C x C
28 7 6 27 5 1 2 eldv φ C F F C C int topGen ran . X F C x X C F x F C x C lim C
29 26 28 mpbid φ C int topGen ran . X F C x X C F x F C x C lim C
30 29 simprd φ F C x X C F x F C x C lim C
31 cjcncf * : cn
32 6 cncfcn1 cn = TopOpen fld Cn TopOpen fld
33 31 32 eleqtri * TopOpen fld Cn TopOpen fld
34 22 ffvelrni C dom F F C
35 3 34 syl φ F C
36 unicntop = TopOpen fld
37 36 cncnpi * TopOpen fld Cn TopOpen fld F C * TopOpen fld CnP TopOpen fld F C
38 33 35 37 sylancr φ * TopOpen fld CnP TopOpen fld F C
39 18 19 6 21 30 38 limccnp φ F C * x X C F x F C x C lim C
40 cjf * :
41 40 a1i φ * :
42 41 17 cofmpt φ * x X C F x F C x C = x X C F x F C x C
43 1 adantr φ x X C F : X
44 eldifi x X C x X
45 44 adantl φ x X C x X
46 43 45 ffvelrnd φ x X C F x
47 1 16 ffvelrnd φ F C
48 47 adantr φ x X C F C
49 46 48 subcld φ x X C F x F C
50 2 sselda φ x X x
51 44 50 sylan2 φ x X C x
52 2 16 sseldd φ C
53 52 adantr φ x X C C
54 51 53 resubcld φ x X C x C
55 54 recnd φ x X C x C
56 51 recnd φ x X C x
57 53 recnd φ x X C C
58 eldifsni x X C x C
59 58 adantl φ x X C x C
60 56 57 59 subne0d φ x X C x C 0
61 49 55 60 cjdivd φ x X C F x F C x C = F x F C x C
62 cjsub F x F C F x F C = F x F C
63 46 48 62 syl2anc φ x X C F x F C = F x F C
64 fvco3 F : X x X * F x = F x
65 1 44 64 syl2an φ x X C * F x = F x
66 fvco3 F : X C X * F C = F C
67 1 16 66 syl2anc φ * F C = F C
68 67 adantr φ x X C * F C = F C
69 65 68 oveq12d φ x X C * F x * F C = F x F C
70 63 69 eqtr4d φ x X C F x F C = * F x * F C
71 54 cjred φ x X C x C = x C
72 70 71 oveq12d φ x X C F x F C x C = * F x * F C x C
73 61 72 eqtrd φ x X C F x F C x C = * F x * F C x C
74 73 mpteq2dva φ x X C F x F C x C = x X C * F x * F C x C
75 42 74 eqtrd φ * x X C F x F C x C = x X C * F x * F C x C
76 75 oveq1d φ * x X C F x F C x C lim C = x X C * F x * F C x C lim C
77 39 76 eleqtrd φ F C x X C * F x * F C x C lim C
78 eqid x X C * F x * F C x C = x X C * F x * F C x C
79 fco * : F : X * F : X
80 40 1 79 sylancr φ * F : X
81 7 6 78 5 80 2 eldv φ C * F F C C int topGen ran . X F C x X C * F x * F C x C lim C
82 9 77 81 mpbir2and φ C * F F C