Step |
Hyp |
Ref |
Expression |
1 |
|
dvcj.f |
|
2 |
|
dvcj.x |
|
3 |
|
dvcj.c |
|
4 |
|
ax-resscn |
|
5 |
4
|
a1i |
|
6 |
|
eqid |
|
7 |
6
|
tgioo2 |
|
8 |
5 1 2 7 6
|
dvbssntr |
|
9 |
8 3
|
sseldd |
|
10 |
2 4
|
sstrdi |
|
11 |
4
|
a1i |
|
12 |
|
simpl |
|
13 |
|
simpr |
|
14 |
11 12 13
|
dvbss |
|
15 |
1 2 14
|
syl2anc |
|
16 |
15 3
|
sseldd |
|
17 |
1 10 16
|
dvlem |
|
18 |
17
|
fmpttd |
|
19 |
|
ssidd |
|
20 |
6
|
cnfldtopon |
|
21 |
20
|
toponrestid |
|
22 |
|
dvf |
|
23 |
|
ffun |
|
24 |
|
funfvbrb |
|
25 |
22 23 24
|
mp2b |
|
26 |
3 25
|
sylib |
|
27 |
|
eqid |
|
28 |
7 6 27 5 1 2
|
eldv |
|
29 |
26 28
|
mpbid |
|
30 |
29
|
simprd |
|
31 |
|
cjcncf |
|
32 |
6
|
cncfcn1 |
|
33 |
31 32
|
eleqtri |
|
34 |
22
|
ffvelrni |
|
35 |
3 34
|
syl |
|
36 |
|
unicntop |
|
37 |
36
|
cncnpi |
|
38 |
33 35 37
|
sylancr |
|
39 |
18 19 6 21 30 38
|
limccnp |
|
40 |
|
cjf |
|
41 |
40
|
a1i |
|
42 |
41 17
|
cofmpt |
|
43 |
1
|
adantr |
|
44 |
|
eldifi |
|
45 |
44
|
adantl |
|
46 |
43 45
|
ffvelrnd |
|
47 |
1 16
|
ffvelrnd |
|
48 |
47
|
adantr |
|
49 |
46 48
|
subcld |
|
50 |
2
|
sselda |
|
51 |
44 50
|
sylan2 |
|
52 |
2 16
|
sseldd |
|
53 |
52
|
adantr |
|
54 |
51 53
|
resubcld |
|
55 |
54
|
recnd |
|
56 |
51
|
recnd |
|
57 |
53
|
recnd |
|
58 |
|
eldifsni |
|
59 |
58
|
adantl |
|
60 |
56 57 59
|
subne0d |
|
61 |
49 55 60
|
cjdivd |
|
62 |
|
cjsub |
|
63 |
46 48 62
|
syl2anc |
|
64 |
|
fvco3 |
|
65 |
1 44 64
|
syl2an |
|
66 |
|
fvco3 |
|
67 |
1 16 66
|
syl2anc |
|
68 |
67
|
adantr |
|
69 |
65 68
|
oveq12d |
|
70 |
63 69
|
eqtr4d |
|
71 |
54
|
cjred |
|
72 |
70 71
|
oveq12d |
|
73 |
61 72
|
eqtrd |
|
74 |
73
|
mpteq2dva |
|
75 |
42 74
|
eqtrd |
|
76 |
75
|
oveq1d |
|
77 |
39 76
|
eleqtrd |
|
78 |
|
eqid |
|
79 |
|
fco |
|
80 |
40 1 79
|
sylancr |
|
81 |
7 6 78 5 80 2
|
eldv |
|
82 |
9 77 81
|
mpbir2and |
|