Metamath Proof Explorer


Theorem dvcl

Description: The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvcl.s φ S
dvcl.f φ F : A
dvcl.a φ A S
Assertion dvcl φ B F S C C

Proof

Step Hyp Ref Expression
1 dvcl.s φ S
2 dvcl.f φ F : A
3 dvcl.a φ A S
4 limccl z A B F z F B z B lim B
5 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
6 eqid TopOpen fld = TopOpen fld
7 eqid z A B F z F B z B = z A B F z F B z B
8 5 6 7 1 2 3 eldv φ B F S C B int TopOpen fld 𝑡 S A C z A B F z F B z B lim B
9 8 simplbda φ B F S C C z A B F z F B z B lim B
10 4 9 sselid φ B F S C C