Metamath Proof Explorer


Theorem dvcn

Description: A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-Sep-2015)

Ref Expression
Assertion dvcn S F : A A S dom F S = A F : A cn

Proof

Step Hyp Ref Expression
1 simpl2 S F : A A S dom F S = A F : A
2 eqid TopOpen fld 𝑡 A = TopOpen fld 𝑡 A
3 eqid TopOpen fld = TopOpen fld
4 2 3 dvcnp2 S F : A A S x dom F S F TopOpen fld 𝑡 A CnP TopOpen fld x
5 4 ralrimiva S F : A A S x dom F S F TopOpen fld 𝑡 A CnP TopOpen fld x
6 raleq dom F S = A x dom F S F TopOpen fld 𝑡 A CnP TopOpen fld x x A F TopOpen fld 𝑡 A CnP TopOpen fld x
7 6 biimpd dom F S = A x dom F S F TopOpen fld 𝑡 A CnP TopOpen fld x x A F TopOpen fld 𝑡 A CnP TopOpen fld x
8 5 7 mpan9 S F : A A S dom F S = A x A F TopOpen fld 𝑡 A CnP TopOpen fld x
9 3 cnfldtopon TopOpen fld TopOn
10 simpl3 S F : A A S dom F S = A A S
11 simpl1 S F : A A S dom F S = A S
12 10 11 sstrd S F : A A S dom F S = A A
13 resttopon TopOpen fld TopOn A TopOpen fld 𝑡 A TopOn A
14 9 12 13 sylancr S F : A A S dom F S = A TopOpen fld 𝑡 A TopOn A
15 cncnp TopOpen fld 𝑡 A TopOn A TopOpen fld TopOn F TopOpen fld 𝑡 A Cn TopOpen fld F : A x A F TopOpen fld 𝑡 A CnP TopOpen fld x
16 14 9 15 sylancl S F : A A S dom F S = A F TopOpen fld 𝑡 A Cn TopOpen fld F : A x A F TopOpen fld 𝑡 A CnP TopOpen fld x
17 1 8 16 mpbir2and S F : A A S dom F S = A F TopOpen fld 𝑡 A Cn TopOpen fld
18 ssid
19 9 toponrestid TopOpen fld = TopOpen fld 𝑡
20 3 2 19 cncfcn A A cn = TopOpen fld 𝑡 A Cn TopOpen fld
21 12 18 20 sylancl S F : A A S dom F S = A A cn = TopOpen fld 𝑡 A Cn TopOpen fld
22 17 21 eleqtrrd S F : A A S dom F S = A F : A cn