Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnp.j |
|
2 |
|
dvcnp.k |
|
3 |
|
simpl2 |
|
4 |
3
|
ffvelrnda |
|
5 |
2
|
cnfldtop |
|
6 |
|
simpl1 |
|
7 |
|
cnex |
|
8 |
|
ssexg |
|
9 |
6 7 8
|
sylancl |
|
10 |
|
resttop |
|
11 |
5 9 10
|
sylancr |
|
12 |
|
simpl3 |
|
13 |
2
|
cnfldtopon |
|
14 |
|
resttopon |
|
15 |
13 6 14
|
sylancr |
|
16 |
|
toponuni |
|
17 |
15 16
|
syl |
|
18 |
12 17
|
sseqtrd |
|
19 |
|
eqid |
|
20 |
19
|
ntrss2 |
|
21 |
11 18 20
|
syl2anc |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
simp1 |
|
25 |
|
simp2 |
|
26 |
|
simp3 |
|
27 |
22 2 23 24 25 26
|
eldv |
|
28 |
27
|
simprbda |
|
29 |
21 28
|
sseldd |
|
30 |
3 29
|
ffvelrnd |
|
31 |
30
|
adantr |
|
32 |
4 31
|
subcld |
|
33 |
|
ssid |
|
34 |
33
|
a1i |
|
35 |
|
txtopon |
|
36 |
13 13 35
|
mp2an |
|
37 |
36
|
toponrestid |
|
38 |
12 6
|
sstrd |
|
39 |
3 38 29
|
dvlem |
|
40 |
38
|
ssdifssd |
|
41 |
40
|
sselda |
|
42 |
38 29
|
sseldd |
|
43 |
42
|
adantr |
|
44 |
41 43
|
subcld |
|
45 |
27
|
simplbda |
|
46 |
|
limcresi |
|
47 |
|
difss |
|
48 |
|
resmpt |
|
49 |
47 48
|
ax-mp |
|
50 |
49
|
oveq1i |
|
51 |
46 50
|
sseqtri |
|
52 |
42
|
subidd |
|
53 |
2
|
subcn |
|
54 |
53
|
a1i |
|
55 |
|
cncfmptid |
|
56 |
38 33 55
|
sylancl |
|
57 |
|
cncfmptc |
|
58 |
42 38 34 57
|
syl3anc |
|
59 |
2 54 56 58
|
cncfmpt2f |
|
60 |
|
oveq1 |
|
61 |
59 29 60
|
cnmptlimc |
|
62 |
52 61
|
eqeltrrd |
|
63 |
51 62
|
sselid |
|
64 |
2
|
mulcn |
|
65 |
24 25 26
|
dvcl |
|
66 |
|
0cn |
|
67 |
|
opelxpi |
|
68 |
65 66 67
|
sylancl |
|
69 |
36
|
toponunii |
|
70 |
69
|
cncnpi |
|
71 |
64 68 70
|
sylancr |
|
72 |
39 44 34 34 2 37 45 63 71
|
limccnp2 |
|
73 |
65
|
mul01d |
|
74 |
3
|
adantr |
|
75 |
|
simpr |
|
76 |
47 75
|
sselid |
|
77 |
74 76
|
ffvelrnd |
|
78 |
30
|
adantr |
|
79 |
77 78
|
subcld |
|
80 |
|
eldifsni |
|
81 |
80
|
adantl |
|
82 |
41 43 81
|
subne0d |
|
83 |
79 44 82
|
divcan1d |
|
84 |
83
|
mpteq2dva |
|
85 |
84
|
oveq1d |
|
86 |
72 73 85
|
3eltr3d |
|
87 |
32
|
fmpttd |
|
88 |
87
|
limcdif |
|
89 |
|
resmpt |
|
90 |
47 89
|
ax-mp |
|
91 |
90
|
oveq1i |
|
92 |
88 91
|
eqtrdi |
|
93 |
86 92
|
eleqtrrd |
|
94 |
|
cncfmptc |
|
95 |
30 38 34 94
|
syl3anc |
|
96 |
|
eqidd |
|
97 |
95 29 96
|
cnmptlimc |
|
98 |
2
|
addcn |
|
99 |
|
opelxpi |
|
100 |
66 30 99
|
sylancr |
|
101 |
69
|
cncnpi |
|
102 |
98 100 101
|
sylancr |
|
103 |
32 31 34 34 2 37 93 97 102
|
limccnp2 |
|
104 |
30
|
addid2d |
|
105 |
4 31
|
npcand |
|
106 |
105
|
mpteq2dva |
|
107 |
3
|
feqmptd |
|
108 |
106 107
|
eqtr4d |
|
109 |
108
|
oveq1d |
|
110 |
103 104 109
|
3eltr3d |
|
111 |
2 1
|
cnplimc |
|
112 |
38 29 111
|
syl2anc |
|
113 |
3 110 112
|
mpbir2and |
|
114 |
113
|
ex |
|
115 |
114
|
exlimdv |
|
116 |
|
eldmg |
|
117 |
116
|
ibi |
|
118 |
115 117
|
impel |
|