| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcnp.j |
|
| 2 |
|
dvcnp.k |
|
| 3 |
|
simpl2 |
|
| 4 |
3
|
ffvelcdmda |
|
| 5 |
2
|
cnfldtop |
|
| 6 |
|
simpl1 |
|
| 7 |
|
cnex |
|
| 8 |
|
ssexg |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
|
resttop |
|
| 11 |
5 9 10
|
sylancr |
|
| 12 |
|
simpl3 |
|
| 13 |
2
|
cnfldtopon |
|
| 14 |
|
resttopon |
|
| 15 |
13 6 14
|
sylancr |
|
| 16 |
|
toponuni |
|
| 17 |
15 16
|
syl |
|
| 18 |
12 17
|
sseqtrd |
|
| 19 |
|
eqid |
|
| 20 |
19
|
ntrss2 |
|
| 21 |
11 18 20
|
syl2anc |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
simp1 |
|
| 25 |
|
simp2 |
|
| 26 |
|
simp3 |
|
| 27 |
22 2 23 24 25 26
|
eldv |
|
| 28 |
27
|
simprbda |
|
| 29 |
21 28
|
sseldd |
|
| 30 |
3 29
|
ffvelcdmd |
|
| 31 |
30
|
adantr |
|
| 32 |
4 31
|
subcld |
|
| 33 |
|
ssid |
|
| 34 |
33
|
a1i |
|
| 35 |
|
txtopon |
|
| 36 |
13 13 35
|
mp2an |
|
| 37 |
36
|
toponrestid |
|
| 38 |
12 6
|
sstrd |
|
| 39 |
3 38 29
|
dvlem |
|
| 40 |
38
|
ssdifssd |
|
| 41 |
40
|
sselda |
|
| 42 |
38 29
|
sseldd |
|
| 43 |
42
|
adantr |
|
| 44 |
41 43
|
subcld |
|
| 45 |
27
|
simplbda |
|
| 46 |
|
limcresi |
|
| 47 |
|
difss |
|
| 48 |
|
resmpt |
|
| 49 |
47 48
|
ax-mp |
|
| 50 |
49
|
oveq1i |
|
| 51 |
46 50
|
sseqtri |
|
| 52 |
42
|
subidd |
|
| 53 |
2
|
subcn |
|
| 54 |
53
|
a1i |
|
| 55 |
|
cncfmptid |
|
| 56 |
38 33 55
|
sylancl |
|
| 57 |
|
cncfmptc |
|
| 58 |
42 38 34 57
|
syl3anc |
|
| 59 |
2 54 56 58
|
cncfmpt2f |
|
| 60 |
|
oveq1 |
|
| 61 |
59 29 60
|
cnmptlimc |
|
| 62 |
52 61
|
eqeltrrd |
|
| 63 |
51 62
|
sselid |
|
| 64 |
2
|
mulcn |
|
| 65 |
24 25 26
|
dvcl |
|
| 66 |
|
0cn |
|
| 67 |
|
opelxpi |
|
| 68 |
65 66 67
|
sylancl |
|
| 69 |
36
|
toponunii |
|
| 70 |
69
|
cncnpi |
|
| 71 |
64 68 70
|
sylancr |
|
| 72 |
39 44 34 34 2 37 45 63 71
|
limccnp2 |
|
| 73 |
65
|
mul01d |
|
| 74 |
3
|
adantr |
|
| 75 |
|
simpr |
|
| 76 |
47 75
|
sselid |
|
| 77 |
74 76
|
ffvelcdmd |
|
| 78 |
30
|
adantr |
|
| 79 |
77 78
|
subcld |
|
| 80 |
|
eldifsni |
|
| 81 |
80
|
adantl |
|
| 82 |
41 43 81
|
subne0d |
|
| 83 |
79 44 82
|
divcan1d |
|
| 84 |
83
|
mpteq2dva |
|
| 85 |
84
|
oveq1d |
|
| 86 |
72 73 85
|
3eltr3d |
|
| 87 |
32
|
fmpttd |
|
| 88 |
87
|
limcdif |
|
| 89 |
|
resmpt |
|
| 90 |
47 89
|
ax-mp |
|
| 91 |
90
|
oveq1i |
|
| 92 |
88 91
|
eqtrdi |
|
| 93 |
86 92
|
eleqtrrd |
|
| 94 |
|
cncfmptc |
|
| 95 |
30 38 34 94
|
syl3anc |
|
| 96 |
|
eqidd |
|
| 97 |
95 29 96
|
cnmptlimc |
|
| 98 |
2
|
addcn |
|
| 99 |
|
opelxpi |
|
| 100 |
66 30 99
|
sylancr |
|
| 101 |
69
|
cncnpi |
|
| 102 |
98 100 101
|
sylancr |
|
| 103 |
32 31 34 34 2 37 93 97 102
|
limccnp2 |
|
| 104 |
30
|
addlidd |
|
| 105 |
4 31
|
npcand |
|
| 106 |
105
|
mpteq2dva |
|
| 107 |
3
|
feqmptd |
|
| 108 |
106 107
|
eqtr4d |
|
| 109 |
108
|
oveq1d |
|
| 110 |
103 104 109
|
3eltr3d |
|
| 111 |
2 1
|
cnplimc |
|
| 112 |
38 29 111
|
syl2anc |
|
| 113 |
3 110 112
|
mpbir2and |
|
| 114 |
113
|
ex |
|
| 115 |
114
|
exlimdv |
|
| 116 |
|
eldmg |
|
| 117 |
116
|
ibi |
|
| 118 |
115 117
|
impel |
|