Metamath Proof Explorer


Theorem dvcnre

Description: From complex differentiation to real differentiation. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dvcnre F:domFDF=F

Proof

Step Hyp Ref Expression
1 reelprrecn
2 1 a1i F:domF
3 simpl F:domFF:
4 ssidd F:domF
5 simpr F:domFdomF
6 dvres3 F:domFDF=F
7 2 3 4 5 6 syl22anc F:domFDF=F