Metamath Proof Explorer


Theorem dvcnv

Description: A weak version of dvcnvre , valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses dvcnv.j J = TopOpen fld
dvcnv.k K = J 𝑡 S
dvcnv.s φ S
dvcnv.y φ Y K
dvcnv.f φ F : X 1-1 onto Y
dvcnv.i φ F -1 : Y cn X
dvcnv.d φ dom F S = X
dvcnv.z φ ¬ 0 ran F S
Assertion dvcnv φ S D F -1 = x Y 1 F S F -1 x

Proof

Step Hyp Ref Expression
1 dvcnv.j J = TopOpen fld
2 dvcnv.k K = J 𝑡 S
3 dvcnv.s φ S
4 dvcnv.y φ Y K
5 dvcnv.f φ F : X 1-1 onto Y
6 dvcnv.i φ F -1 : Y cn X
7 dvcnv.d φ dom F S = X
8 dvcnv.z φ ¬ 0 ran F S
9 dvfg S F -1 S : dom F -1 S
10 3 9 syl φ F -1 S : dom F -1 S
11 recnprss S S
12 3 11 syl φ S
13 f1ocnv F : X 1-1 onto Y F -1 : Y 1-1 onto X
14 f1of F -1 : Y 1-1 onto X F -1 : Y X
15 5 13 14 3syl φ F -1 : Y X
16 dvbsss dom F S S
17 7 16 eqsstrrdi φ X S
18 17 12 sstrd φ X
19 15 18 fssd φ F -1 : Y
20 1 cnfldtopon J TopOn
21 resttopon J TopOn S J 𝑡 S TopOn S
22 20 12 21 sylancr φ J 𝑡 S TopOn S
23 2 22 eqeltrid φ K TopOn S
24 toponss K TopOn S Y K Y S
25 23 4 24 syl2anc φ Y S
26 12 19 25 dvbss φ dom F -1 S Y
27 f1ocnvfv2 F : X 1-1 onto Y x Y F F -1 x = x
28 5 27 sylan φ x Y F F -1 x = x
29 3 adantr φ x Y S
30 4 adantr φ x Y Y K
31 5 adantr φ x Y F : X 1-1 onto Y
32 6 adantr φ x Y F -1 : Y cn X
33 7 adantr φ x Y dom F S = X
34 8 adantr φ x Y ¬ 0 ran F S
35 15 ffvelrnda φ x Y F -1 x X
36 1 2 29 30 31 32 33 34 35 dvcnvlem φ x Y F F -1 x F -1 S 1 F S F -1 x
37 28 36 eqbrtrrd φ x Y x F -1 S 1 F S F -1 x
38 reldv Rel F -1 S
39 38 releldmi x F -1 S 1 F S F -1 x x dom F -1 S
40 37 39 syl φ x Y x dom F -1 S
41 26 40 eqelssd φ dom F -1 S = Y
42 41 feq2d φ F -1 S : dom F -1 S F -1 S : Y
43 10 42 mpbid φ F -1 S : Y
44 43 feqmptd φ S D F -1 = x Y F -1 S x
45 10 adantr φ x Y F -1 S : dom F -1 S
46 45 ffund φ x Y Fun F -1 S
47 funbrfv Fun F -1 S x F -1 S 1 F S F -1 x F -1 S x = 1 F S F -1 x
48 46 37 47 sylc φ x Y F -1 S x = 1 F S F -1 x
49 48 mpteq2dva φ x Y F -1 S x = x Y 1 F S F -1 x
50 44 49 eqtrd φ S D F -1 = x Y 1 F S F -1 x