Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnv.j |
|
2 |
|
dvcnv.k |
|
3 |
|
dvcnv.s |
|
4 |
|
dvcnv.y |
|
5 |
|
dvcnv.f |
|
6 |
|
dvcnv.i |
|
7 |
|
dvcnv.d |
|
8 |
|
dvcnv.z |
|
9 |
|
dvfg |
|
10 |
3 9
|
syl |
|
11 |
|
recnprss |
|
12 |
3 11
|
syl |
|
13 |
|
f1ocnv |
|
14 |
|
f1of |
|
15 |
5 13 14
|
3syl |
|
16 |
|
dvbsss |
|
17 |
7 16
|
eqsstrrdi |
|
18 |
17 12
|
sstrd |
|
19 |
15 18
|
fssd |
|
20 |
1
|
cnfldtopon |
|
21 |
|
resttopon |
|
22 |
20 12 21
|
sylancr |
|
23 |
2 22
|
eqeltrid |
|
24 |
|
toponss |
|
25 |
23 4 24
|
syl2anc |
|
26 |
12 19 25
|
dvbss |
|
27 |
|
f1ocnvfv2 |
|
28 |
5 27
|
sylan |
|
29 |
3
|
adantr |
|
30 |
4
|
adantr |
|
31 |
5
|
adantr |
|
32 |
6
|
adantr |
|
33 |
7
|
adantr |
|
34 |
8
|
adantr |
|
35 |
15
|
ffvelrnda |
|
36 |
1 2 29 30 31 32 33 34 35
|
dvcnvlem |
|
37 |
28 36
|
eqbrtrrd |
|
38 |
|
reldv |
|
39 |
38
|
releldmi |
|
40 |
37 39
|
syl |
|
41 |
26 40
|
eqelssd |
|
42 |
41
|
feq2d |
|
43 |
10 42
|
mpbid |
|
44 |
43
|
feqmptd |
|
45 |
10
|
adantr |
|
46 |
45
|
ffund |
|
47 |
|
funbrfv |
|
48 |
46 37 47
|
sylc |
|
49 |
48
|
mpteq2dva |
|
50 |
44 49
|
eqtrd |
|