Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnv.j |
|
2 |
|
dvcnv.k |
|
3 |
|
dvcnv.s |
|
4 |
|
dvcnv.y |
|
5 |
|
dvcnv.f |
|
6 |
|
dvcnv.i |
|
7 |
|
dvcnv.d |
|
8 |
|
dvcnv.z |
|
9 |
|
dvcnv.c |
|
10 |
|
f1of |
|
11 |
5 10
|
syl |
|
12 |
11 9
|
ffvelrnd |
|
13 |
1
|
cnfldtopon |
|
14 |
|
recnprss |
|
15 |
3 14
|
syl |
|
16 |
|
resttopon |
|
17 |
13 15 16
|
sylancr |
|
18 |
2 17
|
eqeltrid |
|
19 |
|
topontop |
|
20 |
18 19
|
syl |
|
21 |
|
isopn3i |
|
22 |
20 4 21
|
syl2anc |
|
23 |
12 22
|
eleqtrrd |
|
24 |
|
f1ocnv |
|
25 |
|
f1of |
|
26 |
5 24 25
|
3syl |
|
27 |
|
eldifi |
|
28 |
|
ffvelrn |
|
29 |
26 27 28
|
syl2an |
|
30 |
29
|
anim1i |
|
31 |
|
eldifsn |
|
32 |
30 31
|
sylibr |
|
33 |
32
|
anasss |
|
34 |
|
eldifi |
|
35 |
|
dvbsss |
|
36 |
7 35
|
eqsstrrdi |
|
37 |
36 15
|
sstrd |
|
38 |
37
|
sselda |
|
39 |
34 38
|
sylan2 |
|
40 |
36 9
|
sseldd |
|
41 |
15 40
|
sseldd |
|
42 |
41
|
adantr |
|
43 |
39 42
|
subcld |
|
44 |
|
toponss |
|
45 |
18 4 44
|
syl2anc |
|
46 |
45 15
|
sstrd |
|
47 |
11 46
|
fssd |
|
48 |
|
ffvelrn |
|
49 |
47 34 48
|
syl2an |
|
50 |
46 12
|
sseldd |
|
51 |
50
|
adantr |
|
52 |
49 51
|
subcld |
|
53 |
|
eldifsni |
|
54 |
53
|
adantl |
|
55 |
49 51
|
subeq0ad |
|
56 |
|
f1of1 |
|
57 |
5 56
|
syl |
|
58 |
57
|
adantr |
|
59 |
34
|
adantl |
|
60 |
9
|
adantr |
|
61 |
|
f1fveq |
|
62 |
58 59 60 61
|
syl12anc |
|
63 |
55 62
|
bitrd |
|
64 |
63
|
necon3bid |
|
65 |
54 64
|
mpbird |
|
66 |
43 52 65
|
divcld |
|
67 |
|
limcresi |
|
68 |
26
|
feqmptd |
|
69 |
68
|
reseq1d |
|
70 |
|
difss |
|
71 |
|
resmpt |
|
72 |
70 71
|
ax-mp |
|
73 |
69 72
|
eqtrdi |
|
74 |
73
|
oveq1d |
|
75 |
67 74
|
sseqtrid |
|
76 |
|
f1ocnvfv1 |
|
77 |
5 9 76
|
syl2anc |
|
78 |
6 12
|
cnlimci |
|
79 |
77 78
|
eqeltrrd |
|
80 |
75 79
|
sseldd |
|
81 |
47 37 9
|
dvlem |
|
82 |
39 42 54
|
subne0d |
|
83 |
52 43 65 82
|
divne0d |
|
84 |
|
eldifsn |
|
85 |
81 83 84
|
sylanbrc |
|
86 |
85
|
fmpttd |
|
87 |
|
difss |
|
88 |
87
|
a1i |
|
89 |
|
eqid |
|
90 |
9 7
|
eleqtrrd |
|
91 |
|
dvfg |
|
92 |
|
ffun |
|
93 |
|
funfvbrb |
|
94 |
3 91 92 93
|
4syl |
|
95 |
90 94
|
mpbid |
|
96 |
|
eqid |
|
97 |
2 1 96 15 47 36
|
eldv |
|
98 |
95 97
|
mpbid |
|
99 |
98
|
simprd |
|
100 |
|
resttopon |
|
101 |
13 87 100
|
mp2an |
|
102 |
101
|
a1i |
|
103 |
13
|
a1i |
|
104 |
|
1cnd |
|
105 |
102 103 104
|
cnmptc |
|
106 |
102
|
cnmptid |
|
107 |
1 89
|
divcn |
|
108 |
107
|
a1i |
|
109 |
102 105 106 108
|
cnmpt12f |
|
110 |
3 91
|
syl |
|
111 |
7
|
feq2d |
|
112 |
110 111
|
mpbid |
|
113 |
112 9
|
ffvelrnd |
|
114 |
110
|
ffnd |
|
115 |
|
fnfvelrn |
|
116 |
114 90 115
|
syl2anc |
|
117 |
|
nelne2 |
|
118 |
116 8 117
|
syl2anc |
|
119 |
|
eldifsn |
|
120 |
113 118 119
|
sylanbrc |
|
121 |
101
|
toponunii |
|
122 |
121
|
cncnpi |
|
123 |
109 120 122
|
syl2anc |
|
124 |
86 88 1 89 99 123
|
limccnp |
|
125 |
|
oveq2 |
|
126 |
|
eqid |
|
127 |
|
ovex |
|
128 |
125 126 127
|
fvmpt |
|
129 |
120 128
|
syl |
|
130 |
|
eqidd |
|
131 |
|
eqidd |
|
132 |
|
oveq2 |
|
133 |
85 130 131 132
|
fmptco |
|
134 |
52 43 65 82
|
recdivd |
|
135 |
134
|
mpteq2dva |
|
136 |
133 135
|
eqtrd |
|
137 |
136
|
oveq1d |
|
138 |
124 129 137
|
3eltr3d |
|
139 |
|
oveq1 |
|
140 |
|
fveq2 |
|
141 |
140
|
oveq1d |
|
142 |
139 141
|
oveq12d |
|
143 |
|
eldifsni |
|
144 |
143
|
adantl |
|
145 |
144
|
necomd |
|
146 |
|
f1ocnvfvb |
|
147 |
5 9 27 146
|
syl2an3an |
|
148 |
147
|
necon3abid |
|
149 |
145 148
|
mpbid |
|
150 |
149
|
pm2.21d |
|
151 |
150
|
impr |
|
152 |
33 66 80 138 142 151
|
limcco |
|
153 |
77
|
eqcomd |
|
154 |
153
|
adantr |
|
155 |
154
|
oveq2d |
|
156 |
|
f1ocnvfv2 |
|
157 |
5 27 156
|
syl2an |
|
158 |
157
|
oveq1d |
|
159 |
155 158
|
oveq12d |
|
160 |
159
|
mpteq2dva |
|
161 |
160
|
oveq1d |
|
162 |
152 161
|
eleqtrd |
|
163 |
|
eqid |
|
164 |
26 37
|
fssd |
|
165 |
2 1 163 15 164 45
|
eldv |
|
166 |
23 162 165
|
mpbir2and |
|