Step |
Hyp |
Ref |
Expression |
1 |
|
dvcnvre.f |
|
2 |
|
dvcnvre.d |
|
3 |
|
dvcnvre.z |
|
4 |
|
dvcnvre.1 |
|
5 |
|
dvcnvre.c |
|
6 |
|
dvcnvre.r |
|
7 |
|
dvcnvre.s |
|
8 |
|
dvbsss |
|
9 |
2 8
|
eqsstrrdi |
|
10 |
9 5
|
sseldd |
|
11 |
6
|
rpred |
|
12 |
10 11
|
resubcld |
|
13 |
10 11
|
readdcld |
|
14 |
10 6
|
ltsubrpd |
|
15 |
10 6
|
ltaddrpd |
|
16 |
12 10 13 14 15
|
lttrd |
|
17 |
12 13 16
|
ltled |
|
18 |
|
rescncf |
|
19 |
7 1 18
|
sylc |
|
20 |
12 13 17 19
|
evthicc2 |
|
21 |
|
cncff |
|
22 |
1 21
|
syl |
|
23 |
22 5
|
ffvelrnd |
|
24 |
23
|
adantr |
|
25 |
12
|
rexrd |
|
26 |
13
|
rexrd |
|
27 |
|
lbicc2 |
|
28 |
25 26 17 27
|
syl3anc |
|
29 |
28
|
adantr |
|
30 |
12 10 14
|
ltled |
|
31 |
10 13 15
|
ltled |
|
32 |
|
elicc2 |
|
33 |
12 13 32
|
syl2anc |
|
34 |
10 30 31 33
|
mpbir3and |
|
35 |
34
|
adantr |
|
36 |
14
|
adantr |
|
37 |
|
isorel |
|
38 |
37
|
biimpd |
|
39 |
38
|
exp32 |
|
40 |
39
|
com4l |
|
41 |
29 35 36 40
|
syl3c |
|
42 |
29
|
fvresd |
|
43 |
35
|
fvresd |
|
44 |
42 43
|
breq12d |
|
45 |
41 44
|
sylibd |
|
46 |
22
|
adantr |
|
47 |
46
|
ffund |
|
48 |
7
|
adantr |
|
49 |
46
|
fdmd |
|
50 |
48 49
|
sseqtrrd |
|
51 |
|
funfvima2 |
|
52 |
47 50 51
|
syl2anc |
|
53 |
29 52
|
mpd |
|
54 |
|
df-ima |
|
55 |
|
simprr |
|
56 |
54 55
|
eqtrid |
|
57 |
53 56
|
eleqtrd |
|
58 |
|
elicc2 |
|
59 |
58
|
ad2antrl |
|
60 |
57 59
|
mpbid |
|
61 |
60
|
simp2d |
|
62 |
|
simprll |
|
63 |
7 28
|
sseldd |
|
64 |
22 63
|
ffvelrnd |
|
65 |
64
|
adantr |
|
66 |
|
lelttr |
|
67 |
62 65 24 66
|
syl3anc |
|
68 |
61 67
|
mpand |
|
69 |
45 68
|
syld |
|
70 |
|
ubicc2 |
|
71 |
25 26 17 70
|
syl3anc |
|
72 |
71
|
adantr |
|
73 |
15
|
adantr |
|
74 |
|
isorel |
|
75 |
74
|
biimpd |
|
76 |
75
|
exp32 |
|
77 |
76
|
com4l |
|
78 |
35 72 73 77
|
syl3c |
|
79 |
|
fvex |
|
80 |
|
fvex |
|
81 |
79 80
|
brcnv |
|
82 |
72
|
fvresd |
|
83 |
82 43
|
breq12d |
|
84 |
81 83
|
syl5bb |
|
85 |
78 84
|
sylibd |
|
86 |
|
funfvima2 |
|
87 |
47 50 86
|
syl2anc |
|
88 |
72 87
|
mpd |
|
89 |
88 56
|
eleqtrd |
|
90 |
|
elicc2 |
|
91 |
90
|
ad2antrl |
|
92 |
89 91
|
mpbid |
|
93 |
92
|
simp2d |
|
94 |
7 71
|
sseldd |
|
95 |
22 94
|
ffvelrnd |
|
96 |
95
|
adantr |
|
97 |
|
lelttr |
|
98 |
62 96 24 97
|
syl3anc |
|
99 |
93 98
|
mpand |
|
100 |
85 99
|
syld |
|
101 |
|
ax-resscn |
|
102 |
101
|
a1i |
|
103 |
|
fss |
|
104 |
22 101 103
|
sylancl |
|
105 |
7 9
|
sstrd |
|
106 |
|
eqid |
|
107 |
106
|
tgioo2 |
|
108 |
106 107
|
dvres |
|
109 |
102 104 9 105 108
|
syl22anc |
|
110 |
|
iccntr |
|
111 |
12 13 110
|
syl2anc |
|
112 |
111
|
reseq2d |
|
113 |
109 112
|
eqtrd |
|
114 |
113
|
dmeqd |
|
115 |
|
dmres |
|
116 |
|
ioossicc |
|
117 |
116 7
|
sstrid |
|
118 |
117 2
|
sseqtrrd |
|
119 |
|
df-ss |
|
120 |
118 119
|
sylib |
|
121 |
115 120
|
eqtrid |
|
122 |
114 121
|
eqtrd |
|
123 |
|
resss |
|
124 |
113 123
|
eqsstrdi |
|
125 |
|
rnss |
|
126 |
124 125
|
syl |
|
127 |
126 3
|
ssneldd |
|
128 |
12 13 19 122 127
|
dvne0 |
|
129 |
128
|
adantr |
|
130 |
69 100 129
|
mpjaod |
|
131 |
|
isorel |
|
132 |
131
|
biimpd |
|
133 |
132
|
exp32 |
|
134 |
133
|
com4l |
|
135 |
35 72 73 134
|
syl3c |
|
136 |
43 82
|
breq12d |
|
137 |
135 136
|
sylibd |
|
138 |
92
|
simp3d |
|
139 |
|
simprlr |
|
140 |
|
ltletr |
|
141 |
24 96 139 140
|
syl3anc |
|
142 |
138 141
|
mpan2d |
|
143 |
137 142
|
syld |
|
144 |
|
isorel |
|
145 |
144
|
biimpd |
|
146 |
145
|
exp32 |
|
147 |
146
|
com4l |
|
148 |
29 35 36 147
|
syl3c |
|
149 |
|
fvex |
|
150 |
149 79
|
brcnv |
|
151 |
43 42
|
breq12d |
|
152 |
150 151
|
syl5bb |
|
153 |
148 152
|
sylibd |
|
154 |
60
|
simp3d |
|
155 |
|
ltletr |
|
156 |
24 65 139 155
|
syl3anc |
|
157 |
154 156
|
mpan2d |
|
158 |
153 157
|
syld |
|
159 |
143 158 129
|
mpjaod |
|
160 |
62
|
rexrd |
|
161 |
139
|
rexrd |
|
162 |
|
elioo2 |
|
163 |
160 161 162
|
syl2anc |
|
164 |
24 130 159 163
|
mpbir3and |
|
165 |
56
|
fveq2d |
|
166 |
|
iccntr |
|
167 |
166
|
ad2antrl |
|
168 |
165 167
|
eqtrd |
|
169 |
164 168
|
eleqtrrd |
|
170 |
169
|
expr |
|
171 |
170
|
rexlimdvva |
|
172 |
20 171
|
mpd |
|