Metamath Proof Explorer


Theorem dvco

Description: The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvco.f φ F : X
dvco.x φ X S
dvco.g φ G : Y X
dvco.y φ Y T
dvco.s φ S
dvco.t φ T
dvco.df φ G C dom F S
dvco.dg φ C dom G T
Assertion dvco φ F G T C = F S G C G T C

Proof

Step Hyp Ref Expression
1 dvco.f φ F : X
2 dvco.x φ X S
3 dvco.g φ G : Y X
4 dvco.y φ Y T
5 dvco.s φ S
6 dvco.t φ T
7 dvco.df φ G C dom F S
8 dvco.dg φ C dom G T
9 dvfg T F G T : dom F G T
10 ffun F G T : dom F G T Fun F G T
11 6 9 10 3syl φ Fun F G T
12 recnprss S S
13 5 12 syl φ S
14 recnprss T T
15 6 14 syl φ T
16 fvexd φ F S G C V
17 fvexd φ G T C V
18 dvfg S F S : dom F S
19 ffun F S : dom F S Fun F S
20 funfvbrb Fun F S G C dom F S G C F S F S G C
21 5 18 19 20 4syl φ G C dom F S G C F S F S G C
22 7 21 mpbid φ G C F S F S G C
23 dvfg T G T : dom G T
24 ffun G T : dom G T Fun G T
25 funfvbrb Fun G T C dom G T C G T G T C
26 6 23 24 25 4syl φ C dom G T C G T G T C
27 8 26 mpbid φ C G T G T C
28 eqid TopOpen fld = TopOpen fld
29 1 2 3 4 13 15 16 17 22 27 28 dvcobr φ C F G T F S G C G T C
30 funbrfv Fun F G T C F G T F S G C G T C F G T C = F S G C G T C
31 11 29 30 sylc φ F G T C = F S G C G T C