Step |
Hyp |
Ref |
Expression |
1 |
|
dvco.f |
|
2 |
|
dvco.x |
|
3 |
|
dvco.g |
|
4 |
|
dvco.y |
|
5 |
|
dvcobr.s |
|
6 |
|
dvcobr.t |
|
7 |
|
dvco.k |
|
8 |
|
dvco.l |
|
9 |
|
dvco.bf |
|
10 |
|
dvco.bg |
|
11 |
|
dvco.j |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
2 5
|
sstrd |
|
15 |
3 14
|
fssd |
|
16 |
12 11 13 6 15 4
|
eldv |
|
17 |
10 16
|
mpbid |
|
18 |
17
|
simpld |
|
19 |
5 1 2
|
dvcl |
|
20 |
9 19
|
mpdan |
|
21 |
20
|
ad2antrr |
|
22 |
1
|
adantr |
|
23 |
|
eldifi |
|
24 |
|
ffvelrn |
|
25 |
3 23 24
|
syl2an |
|
26 |
22 25
|
ffvelrnd |
|
27 |
26
|
adantr |
|
28 |
3
|
adantr |
|
29 |
6 15 4
|
dvbss |
|
30 |
|
reldv |
|
31 |
|
releldm |
|
32 |
30 10 31
|
sylancr |
|
33 |
29 32
|
sseldd |
|
34 |
33
|
adantr |
|
35 |
28 34
|
ffvelrnd |
|
36 |
22 35
|
ffvelrnd |
|
37 |
36
|
adantr |
|
38 |
27 37
|
subcld |
|
39 |
15
|
ad2antrr |
|
40 |
23
|
ad2antlr |
|
41 |
39 40
|
ffvelrnd |
|
42 |
33
|
ad2antrr |
|
43 |
39 42
|
ffvelrnd |
|
44 |
41 43
|
subcld |
|
45 |
|
simpr |
|
46 |
41 43
|
subeq0ad |
|
47 |
46
|
necon3abid |
|
48 |
45 47
|
mpbird |
|
49 |
38 44 48
|
divcld |
|
50 |
21 49
|
ifclda |
|
51 |
4 6
|
sstrd |
|
52 |
15 51 33
|
dvlem |
|
53 |
|
ssidd |
|
54 |
11
|
cnfldtopon |
|
55 |
|
txtopon |
|
56 |
54 54 55
|
mp2an |
|
57 |
56
|
toponrestid |
|
58 |
25
|
anim1i |
|
59 |
|
eldifsn |
|
60 |
58 59
|
sylibr |
|
61 |
60
|
anasss |
|
62 |
|
eldifsni |
|
63 |
|
ifnefalse |
|
64 |
62 63
|
syl |
|
65 |
64
|
adantl |
|
66 |
3 33
|
ffvelrnd |
|
67 |
1 14 66
|
dvlem |
|
68 |
65 67
|
eqeltrd |
|
69 |
|
limcresi |
|
70 |
3
|
feqmptd |
|
71 |
70
|
reseq1d |
|
72 |
|
difss |
|
73 |
|
resmpt |
|
74 |
72 73
|
ax-mp |
|
75 |
71 74
|
eqtrdi |
|
76 |
75
|
oveq1d |
|
77 |
69 76
|
sseqtrid |
|
78 |
|
eqid |
|
79 |
78 11
|
dvcnp2 |
|
80 |
6 15 4 32 79
|
syl31anc |
|
81 |
11 78
|
cnplimc |
|
82 |
51 33 81
|
syl2anc |
|
83 |
80 82
|
mpbid |
|
84 |
83
|
simprd |
|
85 |
77 84
|
sseldd |
|
86 |
|
eqid |
|
87 |
|
eqid |
|
88 |
86 11 87 5 1 2
|
eldv |
|
89 |
9 88
|
mpbid |
|
90 |
89
|
simprd |
|
91 |
64
|
mpteq2ia |
|
92 |
91
|
oveq1i |
|
93 |
90 92
|
eleqtrrdi |
|
94 |
|
eqeq1 |
|
95 |
|
fveq2 |
|
96 |
95
|
oveq1d |
|
97 |
|
oveq1 |
|
98 |
96 97
|
oveq12d |
|
99 |
94 98
|
ifbieq2d |
|
100 |
|
iftrue |
|
101 |
100
|
ad2antll |
|
102 |
61 68 85 93 99 101
|
limcco |
|
103 |
17
|
simprd |
|
104 |
11
|
mulcn |
|
105 |
6 15 4
|
dvcl |
|
106 |
10 105
|
mpdan |
|
107 |
20 106
|
opelxpd |
|
108 |
56
|
toponunii |
|
109 |
108
|
cncnpi |
|
110 |
104 107 109
|
sylancr |
|
111 |
50 52 53 53 11 57 102 103 110
|
limccnp2 |
|
112 |
|
oveq1 |
|
113 |
112
|
eqeq1d |
|
114 |
|
oveq1 |
|
115 |
114
|
eqeq1d |
|
116 |
21
|
mul01d |
|
117 |
14
|
adantr |
|
118 |
117 25
|
sseldd |
|
119 |
117 35
|
sseldd |
|
120 |
118 119
|
subeq0ad |
|
121 |
120
|
biimpar |
|
122 |
121
|
oveq1d |
|
123 |
51
|
adantr |
|
124 |
23
|
adantl |
|
125 |
123 124
|
sseldd |
|
126 |
123 34
|
sseldd |
|
127 |
125 126
|
subcld |
|
128 |
|
eldifsni |
|
129 |
128
|
adantl |
|
130 |
125 126 129
|
subne0d |
|
131 |
127 130
|
div0d |
|
132 |
131
|
adantr |
|
133 |
122 132
|
eqtrd |
|
134 |
133
|
oveq2d |
|
135 |
|
fveq2 |
|
136 |
26 36
|
subeq0ad |
|
137 |
135 136
|
syl5ibr |
|
138 |
137
|
imp |
|
139 |
138
|
oveq1d |
|
140 |
139 132
|
eqtrd |
|
141 |
116 134 140
|
3eqtr4d |
|
142 |
127
|
adantr |
|
143 |
130
|
adantr |
|
144 |
38 44 142 48 143
|
dmdcan2d |
|
145 |
113 115 141 144
|
ifbothda |
|
146 |
|
fvco3 |
|
147 |
3 23 146
|
syl2an |
|
148 |
|
fvco3 |
|
149 |
3 33 148
|
syl2anc |
|
150 |
149
|
adantr |
|
151 |
147 150
|
oveq12d |
|
152 |
151
|
oveq1d |
|
153 |
145 152
|
eqtr4d |
|
154 |
153
|
mpteq2dva |
|
155 |
154
|
oveq1d |
|
156 |
111 155
|
eleqtrd |
|
157 |
|
eqid |
|
158 |
|
fco |
|
159 |
1 3 158
|
syl2anc |
|
160 |
12 11 157 6 159 4
|
eldv |
|
161 |
18 156 160
|
mpbir2and |
|