| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvco.f |
|
| 2 |
|
dvco.x |
|
| 3 |
|
dvco.g |
|
| 4 |
|
dvco.y |
|
| 5 |
|
dvcobr.s |
|
| 6 |
|
dvcobr.t |
|
| 7 |
|
dvco.bf |
|
| 8 |
|
dvco.bg |
|
| 9 |
|
dvco.j |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
2 5
|
sstrd |
|
| 13 |
3 12
|
fssd |
|
| 14 |
10 9 11 6 13 4
|
eldv |
|
| 15 |
8 14
|
mpbid |
|
| 16 |
15
|
simpld |
|
| 17 |
5 1 2
|
dvcl |
|
| 18 |
7 17
|
mpdan |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
1
|
adantr |
|
| 21 |
|
eldifi |
|
| 22 |
|
ffvelcdm |
|
| 23 |
3 21 22
|
syl2an |
|
| 24 |
20 23
|
ffvelcdmd |
|
| 25 |
24
|
adantr |
|
| 26 |
3
|
adantr |
|
| 27 |
6 13 4
|
dvbss |
|
| 28 |
|
reldv |
|
| 29 |
|
releldm |
|
| 30 |
28 8 29
|
sylancr |
|
| 31 |
27 30
|
sseldd |
|
| 32 |
31
|
adantr |
|
| 33 |
26 32
|
ffvelcdmd |
|
| 34 |
20 33
|
ffvelcdmd |
|
| 35 |
34
|
adantr |
|
| 36 |
25 35
|
subcld |
|
| 37 |
13
|
ad2antrr |
|
| 38 |
21
|
ad2antlr |
|
| 39 |
37 38
|
ffvelcdmd |
|
| 40 |
31
|
ad2antrr |
|
| 41 |
37 40
|
ffvelcdmd |
|
| 42 |
39 41
|
subcld |
|
| 43 |
|
simpr |
|
| 44 |
39 41
|
subeq0ad |
|
| 45 |
44
|
necon3abid |
|
| 46 |
43 45
|
mpbird |
|
| 47 |
36 42 46
|
divcld |
|
| 48 |
19 47
|
ifclda |
|
| 49 |
4 6
|
sstrd |
|
| 50 |
13 49 31
|
dvlem |
|
| 51 |
|
ssidd |
|
| 52 |
9
|
cnfldtopon |
|
| 53 |
|
txtopon |
|
| 54 |
52 52 53
|
mp2an |
|
| 55 |
54
|
toponrestid |
|
| 56 |
23
|
anim1i |
|
| 57 |
|
eldifsn |
|
| 58 |
56 57
|
sylibr |
|
| 59 |
58
|
anasss |
|
| 60 |
|
eldifsni |
|
| 61 |
|
ifnefalse |
|
| 62 |
60 61
|
syl |
|
| 63 |
62
|
adantl |
|
| 64 |
3 31
|
ffvelcdmd |
|
| 65 |
1 12 64
|
dvlem |
|
| 66 |
63 65
|
eqeltrd |
|
| 67 |
|
limcresi |
|
| 68 |
3
|
feqmptd |
|
| 69 |
68
|
reseq1d |
|
| 70 |
|
difss |
|
| 71 |
|
resmpt |
|
| 72 |
70 71
|
ax-mp |
|
| 73 |
69 72
|
eqtrdi |
|
| 74 |
73
|
oveq1d |
|
| 75 |
67 74
|
sseqtrid |
|
| 76 |
|
eqid |
|
| 77 |
76 9
|
dvcnp2 |
|
| 78 |
6 13 4 30 77
|
syl31anc |
|
| 79 |
9 76
|
cnplimc |
|
| 80 |
49 31 79
|
syl2anc |
|
| 81 |
78 80
|
mpbid |
|
| 82 |
81
|
simprd |
|
| 83 |
75 82
|
sseldd |
|
| 84 |
|
eqid |
|
| 85 |
|
eqid |
|
| 86 |
84 9 85 5 1 2
|
eldv |
|
| 87 |
7 86
|
mpbid |
|
| 88 |
87
|
simprd |
|
| 89 |
62
|
mpteq2ia |
|
| 90 |
89
|
oveq1i |
|
| 91 |
88 90
|
eleqtrrdi |
|
| 92 |
|
eqeq1 |
|
| 93 |
|
fveq2 |
|
| 94 |
93
|
oveq1d |
|
| 95 |
|
oveq1 |
|
| 96 |
94 95
|
oveq12d |
|
| 97 |
92 96
|
ifbieq2d |
|
| 98 |
|
iftrue |
|
| 99 |
98
|
ad2antll |
|
| 100 |
59 66 83 91 97 99
|
limcco |
|
| 101 |
15
|
simprd |
|
| 102 |
9
|
mulcn |
|
| 103 |
6 13 4
|
dvcl |
|
| 104 |
8 103
|
mpdan |
|
| 105 |
18 104
|
opelxpd |
|
| 106 |
54
|
toponunii |
|
| 107 |
106
|
cncnpi |
|
| 108 |
102 105 107
|
sylancr |
|
| 109 |
48 50 51 51 9 55 100 101 108
|
limccnp2 |
|
| 110 |
|
oveq1 |
|
| 111 |
110
|
eqeq1d |
|
| 112 |
|
oveq1 |
|
| 113 |
112
|
eqeq1d |
|
| 114 |
19
|
mul01d |
|
| 115 |
12
|
adantr |
|
| 116 |
115 23
|
sseldd |
|
| 117 |
115 33
|
sseldd |
|
| 118 |
116 117
|
subeq0ad |
|
| 119 |
118
|
biimpar |
|
| 120 |
119
|
oveq1d |
|
| 121 |
49
|
adantr |
|
| 122 |
21
|
adantl |
|
| 123 |
121 122
|
sseldd |
|
| 124 |
121 32
|
sseldd |
|
| 125 |
123 124
|
subcld |
|
| 126 |
|
eldifsni |
|
| 127 |
126
|
adantl |
|
| 128 |
123 124 127
|
subne0d |
|
| 129 |
125 128
|
div0d |
|
| 130 |
129
|
adantr |
|
| 131 |
120 130
|
eqtrd |
|
| 132 |
131
|
oveq2d |
|
| 133 |
|
fveq2 |
|
| 134 |
24 34
|
subeq0ad |
|
| 135 |
133 134
|
imbitrrid |
|
| 136 |
135
|
imp |
|
| 137 |
136
|
oveq1d |
|
| 138 |
137 130
|
eqtrd |
|
| 139 |
114 132 138
|
3eqtr4d |
|
| 140 |
125
|
adantr |
|
| 141 |
128
|
adantr |
|
| 142 |
36 42 140 46 141
|
dmdcan2d |
|
| 143 |
111 113 139 142
|
ifbothda |
|
| 144 |
|
fvco3 |
|
| 145 |
3 21 144
|
syl2an |
|
| 146 |
|
fvco3 |
|
| 147 |
3 31 146
|
syl2anc |
|
| 148 |
147
|
adantr |
|
| 149 |
145 148
|
oveq12d |
|
| 150 |
149
|
oveq1d |
|
| 151 |
143 150
|
eqtr4d |
|
| 152 |
151
|
mpteq2dva |
|
| 153 |
152
|
oveq1d |
|
| 154 |
109 153
|
eleqtrd |
|
| 155 |
|
eqid |
|
| 156 |
|
fco |
|
| 157 |
1 3 156
|
syl2anc |
|
| 158 |
10 9 155 6 157 4
|
eldv |
|
| 159 |
16 154 158
|
mpbir2and |
|