| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcof.s |
|
| 2 |
|
dvcof.t |
|
| 3 |
|
dvcof.f |
|
| 4 |
|
dvcof.g |
|
| 5 |
|
dvcof.df |
|
| 6 |
|
dvcof.dg |
|
| 7 |
3
|
adantr |
|
| 8 |
|
dvbsss |
|
| 9 |
5 8
|
eqsstrrdi |
|
| 10 |
9
|
adantr |
|
| 11 |
4
|
adantr |
|
| 12 |
|
dvbsss |
|
| 13 |
6 12
|
eqsstrrdi |
|
| 14 |
13
|
adantr |
|
| 15 |
1
|
adantr |
|
| 16 |
2
|
adantr |
|
| 17 |
4
|
ffvelcdmda |
|
| 18 |
5
|
adantr |
|
| 19 |
17 18
|
eleqtrrd |
|
| 20 |
6
|
eleq2d |
|
| 21 |
20
|
biimpar |
|
| 22 |
7 10 11 14 15 16 19 21
|
dvco |
|
| 23 |
22
|
mpteq2dva |
|
| 24 |
|
dvfg |
|
| 25 |
2 24
|
syl |
|
| 26 |
|
recnprss |
|
| 27 |
2 26
|
syl |
|
| 28 |
|
fco |
|
| 29 |
3 4 28
|
syl2anc |
|
| 30 |
27 29 13
|
dvbss |
|
| 31 |
|
recnprss |
|
| 32 |
15 31
|
syl |
|
| 33 |
16 26
|
syl |
|
| 34 |
|
dvfg |
|
| 35 |
|
ffun |
|
| 36 |
|
funfvbrb |
|
| 37 |
15 34 35 36
|
4syl |
|
| 38 |
19 37
|
mpbid |
|
| 39 |
|
dvfg |
|
| 40 |
|
ffun |
|
| 41 |
|
funfvbrb |
|
| 42 |
16 39 40 41
|
4syl |
|
| 43 |
21 42
|
mpbid |
|
| 44 |
|
eqid |
|
| 45 |
7 10 11 14 32 33 38 43 44
|
dvcobr |
|
| 46 |
|
reldv |
|
| 47 |
46
|
releldmi |
|
| 48 |
45 47
|
syl |
|
| 49 |
30 48
|
eqelssd |
|
| 50 |
49
|
feq2d |
|
| 51 |
25 50
|
mpbid |
|
| 52 |
51
|
feqmptd |
|
| 53 |
2 13
|
ssexd |
|
| 54 |
|
fvexd |
|
| 55 |
|
fvexd |
|
| 56 |
4
|
feqmptd |
|
| 57 |
1 34
|
syl |
|
| 58 |
5
|
feq2d |
|
| 59 |
57 58
|
mpbid |
|
| 60 |
59
|
feqmptd |
|
| 61 |
|
fveq2 |
|
| 62 |
17 56 60 61
|
fmptco |
|
| 63 |
2 39
|
syl |
|
| 64 |
6
|
feq2d |
|
| 65 |
63 64
|
mpbid |
|
| 66 |
65
|
feqmptd |
|
| 67 |
53 54 55 62 66
|
offval2 |
|
| 68 |
23 52 67
|
3eqtr4d |
|