Metamath Proof Explorer


Theorem dvconst

Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvconst A D × A = × 0

Proof

Step Hyp Ref Expression
1 fconst6g A × A :
2 simpr2 A x z z x z
3 fvconst2g A z × A z = A
4 2 3 syldan A x z z x × A z = A
5 fvconst2g A x × A x = A
6 5 3ad2antr1 A x z z x × A x = A
7 4 6 oveq12d A x z z x × A z × A x = A A
8 subid A A A = 0
9 8 adantr A x z z x A A = 0
10 7 9 eqtrd A x z z x × A z × A x = 0
11 10 oveq1d A x z z x × A z × A x z x = 0 z x
12 simpr1 A x z z x x
13 2 12 subcld A x z z x z x
14 simpr3 A x z z x z x
15 2 12 14 subne0d A x z z x z x 0
16 13 15 div0d A x z z x 0 z x = 0
17 11 16 eqtrd A x z z x × A z × A x z x = 0
18 0cn 0
19 1 17 18 dvidlem A D × A = × 0