Metamath Proof Explorer


Theorem dvcosre

Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion dvcosre dx cos x d x = x sin x

Proof

Step Hyp Ref Expression
1 reelprrecn
2 cosf cos :
3 ssid
4 nfcv _ x
5 nfrab1 _ x x | sin x V
6 4 5 dfss2f x | sin x V x x x x | sin x V
7 recn x x
8 7 sincld x sin x
9 8 negcld x sin x
10 elex sin x sin x V
11 9 10 syl x sin x V
12 rabid x x | sin x V x sin x V
13 7 11 12 sylanbrc x x x | sin x V
14 6 13 mpgbir x | sin x V
15 dvcos D cos = x sin x
16 15 dmmpt dom cos = x | sin x V
17 14 16 sseqtrri dom cos
18 dvres3 cos : dom cos D cos = cos
19 1 2 3 17 18 mp4an D cos = cos
20 ffn cos : cos Fn
21 2 20 ax-mp cos Fn
22 dffn5 cos Fn cos = x cos x
23 21 22 mpbi cos = x cos x
24 23 reseq1i cos = x cos x
25 ax-resscn
26 resmpt x cos x = x cos x
27 25 26 ax-mp x cos x = x cos x
28 24 27 eqtri cos = x cos x
29 28 oveq2i D cos = dx cos x d x
30 15 reseq1i cos = x sin x
31 resmpt x sin x = x sin x
32 25 31 ax-mp x sin x = x sin x
33 30 32 eqtri cos = x sin x
34 19 29 33 3eqtr3i dx cos x d x = x sin x