Metamath Proof Explorer


Theorem dvcxp1

Description: The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion dvcxp1 A dx + x A d x = x + A x A 1

Proof

Step Hyp Ref Expression
1 reelprrecn
2 1 a1i A
3 relogcl x + log x
4 3 adantl A x + log x
5 rpreccl x + 1 x +
6 5 adantl A x + 1 x +
7 recn y y
8 mulcl A y A y
9 efcl A y e A y
10 8 9 syl A y e A y
11 7 10 sylan2 A y e A y
12 ovexd A y e A y A V
13 relogf1o log + : + 1-1 onto
14 f1of log + : + 1-1 onto log + : +
15 13 14 mp1i A log + : +
16 15 feqmptd A log + = x + log + x
17 fvres x + log + x = log x
18 17 mpteq2ia x + log + x = x + log x
19 16 18 eqtrdi A log + = x + log x
20 19 oveq2d A D log + = dx + log x d x
21 dvrelog D log + = x + 1 x
22 20 21 eqtr3di A dx + log x d x = x + 1 x
23 eqid TopOpen fld = TopOpen fld
24 23 cnfldtopon TopOpen fld TopOn
25 toponmax TopOpen fld TopOn TopOpen fld
26 24 25 mp1i A TopOpen fld
27 ax-resscn
28 27 a1i A
29 df-ss =
30 28 29 sylib A =
31 ovexd A y e A y A V
32 cnelprrecn
33 32 a1i A
34 simpl A y A
35 efcl x e x
36 35 adantl A x e x
37 simpr A y y
38 1cnd A y 1
39 33 dvmptid A dy y d y = y 1
40 id A A
41 33 37 38 39 40 dvmptcmul A dy A y d y = y A 1
42 mulid1 A A 1 = A
43 42 mpteq2dv A y A 1 = y A
44 41 43 eqtrd A dy A y d y = y A
45 dvef D exp = exp
46 eff exp :
47 46 a1i A exp :
48 47 feqmptd A exp = x e x
49 48 eqcomd A x e x = exp
50 49 oveq2d A dx e x d x = D exp
51 45 50 49 3eqtr4a A dx e x d x = x e x
52 fveq2 x = A y e x = e A y
53 33 33 8 34 36 36 44 51 52 52 dvmptco A dy e A y d y = y e A y A
54 23 2 26 30 10 31 53 dvmptres3 A dy e A y d y = y e A y A
55 oveq2 y = log x A y = A log x
56 55 fveq2d y = log x e A y = e A log x
57 56 oveq1d y = log x e A y A = e A log x A
58 2 2 4 6 11 12 22 54 56 57 dvmptco A dx + e A log x d x = x + e A log x A 1 x
59 rpcn x + x
60 59 adantl A x + x
61 rpne0 x + x 0
62 61 adantl A x + x 0
63 simpl A x + A
64 60 62 63 cxpefd A x + x A = e A log x
65 64 mpteq2dva A x + x A = x + e A log x
66 65 oveq2d A dx + x A d x = dx + e A log x d x
67 1cnd A x + 1
68 60 62 63 67 cxpsubd A x + x A 1 = x A x 1
69 60 cxp1d A x + x 1 = x
70 69 oveq2d A x + x A x 1 = x A x
71 60 63 cxpcld A x + x A
72 71 60 62 divrecd A x + x A x = x A 1 x
73 68 70 72 3eqtrd A x + x A 1 = x A 1 x
74 73 oveq2d A x + A x A 1 = A x A 1 x
75 6 rpcnd A x + 1 x
76 63 71 75 mul12d A x + A x A 1 x = x A A 1 x
77 71 63 75 mulassd A x + x A A 1 x = x A A 1 x
78 76 77 eqtr4d A x + A x A 1 x = x A A 1 x
79 64 oveq1d A x + x A A = e A log x A
80 79 oveq1d A x + x A A 1 x = e A log x A 1 x
81 74 78 80 3eqtrd A x + A x A 1 = e A log x A 1 x
82 81 mpteq2dva A x + A x A 1 = x + e A log x A 1 x
83 58 66 82 3eqtr4d A dx + x A d x = x + A x A 1