Step |
Hyp |
Ref |
Expression |
1 |
|
reelprrecn |
|
2 |
1
|
a1i |
|
3 |
|
relogcl |
|
4 |
3
|
adantl |
|
5 |
|
rpreccl |
|
6 |
5
|
adantl |
|
7 |
|
recn |
|
8 |
|
mulcl |
|
9 |
|
efcl |
|
10 |
8 9
|
syl |
|
11 |
7 10
|
sylan2 |
|
12 |
|
ovexd |
|
13 |
|
relogf1o |
|
14 |
|
f1of |
|
15 |
13 14
|
mp1i |
|
16 |
15
|
feqmptd |
|
17 |
|
fvres |
|
18 |
17
|
mpteq2ia |
|
19 |
16 18
|
eqtrdi |
|
20 |
19
|
oveq2d |
|
21 |
|
dvrelog |
|
22 |
20 21
|
eqtr3di |
|
23 |
|
eqid |
|
24 |
23
|
cnfldtopon |
|
25 |
|
toponmax |
|
26 |
24 25
|
mp1i |
|
27 |
|
ax-resscn |
|
28 |
27
|
a1i |
|
29 |
|
df-ss |
|
30 |
28 29
|
sylib |
|
31 |
|
ovexd |
|
32 |
|
cnelprrecn |
|
33 |
32
|
a1i |
|
34 |
|
simpl |
|
35 |
|
efcl |
|
36 |
35
|
adantl |
|
37 |
|
simpr |
|
38 |
|
1cnd |
|
39 |
33
|
dvmptid |
|
40 |
|
id |
|
41 |
33 37 38 39 40
|
dvmptcmul |
|
42 |
|
mulid1 |
|
43 |
42
|
mpteq2dv |
|
44 |
41 43
|
eqtrd |
|
45 |
|
dvef |
|
46 |
|
eff |
|
47 |
46
|
a1i |
|
48 |
47
|
feqmptd |
|
49 |
48
|
eqcomd |
|
50 |
49
|
oveq2d |
|
51 |
45 50 49
|
3eqtr4a |
|
52 |
|
fveq2 |
|
53 |
33 33 8 34 36 36 44 51 52 52
|
dvmptco |
|
54 |
23 2 26 30 10 31 53
|
dvmptres3 |
|
55 |
|
oveq2 |
|
56 |
55
|
fveq2d |
|
57 |
56
|
oveq1d |
|
58 |
2 2 4 6 11 12 22 54 56 57
|
dvmptco |
|
59 |
|
rpcn |
|
60 |
59
|
adantl |
|
61 |
|
rpne0 |
|
62 |
61
|
adantl |
|
63 |
|
simpl |
|
64 |
60 62 63
|
cxpefd |
|
65 |
64
|
mpteq2dva |
|
66 |
65
|
oveq2d |
|
67 |
|
1cnd |
|
68 |
60 62 63 67
|
cxpsubd |
|
69 |
60
|
cxp1d |
|
70 |
69
|
oveq2d |
|
71 |
60 63
|
cxpcld |
|
72 |
71 60 62
|
divrecd |
|
73 |
68 70 72
|
3eqtrd |
|
74 |
73
|
oveq2d |
|
75 |
6
|
rpcnd |
|
76 |
63 71 75
|
mul12d |
|
77 |
71 63 75
|
mulassd |
|
78 |
76 77
|
eqtr4d |
|
79 |
64
|
oveq1d |
|
80 |
79
|
oveq1d |
|
81 |
74 78 80
|
3eqtrd |
|
82 |
81
|
mpteq2dva |
|
83 |
58 66 82
|
3eqtr4d |
|