Metamath Proof Explorer


Theorem dvdivbd

Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvdivbd.s φ S
dvdivbd.a φ x X A
dvdivbd.adv φ dx X A dS x = x X C
dvdivbd.c φ x X C
dvdivbd.b φ x X B
dvdivbd.u φ U
dvdivbd.r φ R
dvdivbd.t φ T
dvdivbd.q φ Q
dvdivbd.cbd φ x X C U
dvdivbd.bbd φ x X B R
dvdivbd.dbd φ x X D T
dvdivbd.abd φ x X A Q
dvdivbd.bdv φ dx X B dS x = x X D
dvdivbd.d φ x X D
dvdivbd.e φ E +
dvdivbd.ele φ x X E B
dvdivbd.f F = dx X A B dS x
Assertion dvdivbd φ b x X F x b

Proof

Step Hyp Ref Expression
1 dvdivbd.s φ S
2 dvdivbd.a φ x X A
3 dvdivbd.adv φ dx X A dS x = x X C
4 dvdivbd.c φ x X C
5 dvdivbd.b φ x X B
6 dvdivbd.u φ U
7 dvdivbd.r φ R
8 dvdivbd.t φ T
9 dvdivbd.q φ Q
10 dvdivbd.cbd φ x X C U
11 dvdivbd.bbd φ x X B R
12 dvdivbd.dbd φ x X D T
13 dvdivbd.abd φ x X A Q
14 dvdivbd.bdv φ dx X B dS x = x X D
15 dvdivbd.d φ x X D
16 dvdivbd.e φ E +
17 dvdivbd.ele φ x X E B
18 dvdivbd.f F = dx X A B dS x
19 6 7 remulcld φ U R
20 8 9 remulcld φ T Q
21 19 20 readdcld φ U R + T Q
22 16 rpred φ E
23 22 resqcld φ E 2
24 16 rpcnd φ E
25 16 rpgt0d φ 0 < E
26 25 gt0ne0d φ E 0
27 2z 2
28 27 a1i φ 2
29 24 26 28 expne0d φ E 2 0
30 21 23 29 redivcld φ U R + T Q E 2
31 simpr φ x X B = 0 B = 0
32 31 abs00bd φ x X B = 0 B = 0
33 0red φ x X 0
34 22 adantr φ x X E
35 5 abscld φ x X B
36 25 adantr φ x X 0 < E
37 17 r19.21bi φ x X E B
38 33 34 35 36 37 ltletrd φ x X 0 < B
39 38 gt0ne0d φ x X B 0
40 39 adantr φ x X B = 0 B 0
41 40 neneqd φ x X B = 0 ¬ B = 0
42 32 41 pm2.65da φ x X ¬ B = 0
43 42 neqned φ x X B 0
44 eldifsn B 0 B B 0
45 5 43 44 sylanbrc φ x X B 0
46 1 2 4 3 45 15 14 dvmptdiv φ dx X A B dS x = x X C B D A B 2
47 18 46 syl5eq φ F = x X C B D A B 2
48 4 5 mulcld φ x X C B
49 15 2 mulcld φ x X D A
50 48 49 subcld φ x X C B D A
51 5 sqcld φ x X B 2
52 sqne0 B B 2 0 B 0
53 5 52 syl φ x X B 2 0 B 0
54 43 53 mpbird φ x X B 2 0
55 50 51 54 divcld φ x X C B D A B 2
56 47 55 fvmpt2d φ x X F x = C B D A B 2
57 56 fveq2d φ x X F x = C B D A B 2
58 50 51 54 absdivd φ x X C B D A B 2 = C B D A B 2
59 50 abscld φ x X C B D A
60 21 adantr φ x X U R + T Q
61 16 adantr φ x X E +
62 27 a1i φ x X 2
63 61 62 rpexpcld φ x X E 2 +
64 51 abscld φ x X B 2
65 50 absge0d φ x X 0 C B D A
66 48 abscld φ x X C B
67 49 abscld φ x X D A
68 66 67 readdcld φ x X C B + D A
69 48 49 abs2dif2d φ x X C B D A C B + D A
70 19 adantr φ x X U R
71 20 adantr φ x X T Q
72 4 5 absmuld φ x X C B = C B
73 4 abscld φ x X C
74 6 adantr φ x X U
75 7 adantr φ x X R
76 4 absge0d φ x X 0 C
77 5 absge0d φ x X 0 B
78 73 74 35 75 76 77 10 11 lemul12ad φ x X C B U R
79 72 78 eqbrtrd φ x X C B U R
80 15 2 absmuld φ x X D A = D A
81 15 abscld φ x X D
82 8 adantr φ x X T
83 2 abscld φ x X A
84 9 adantr φ x X Q
85 15 absge0d φ x X 0 D
86 2 absge0d φ x X 0 A
87 81 82 83 84 85 86 12 13 lemul12ad φ x X D A T Q
88 80 87 eqbrtrd φ x X D A T Q
89 66 67 70 71 79 88 le2addd φ x X C B + D A U R + T Q
90 59 68 60 69 89 letrd φ x X C B D A U R + T Q
91 2nn0 2 0
92 91 a1i φ x X 2 0
93 33 34 36 ltled φ x X 0 E
94 leexp1a E B 2 0 0 E E B E 2 B 2
95 34 35 92 93 37 94 syl32anc φ x X E 2 B 2
96 5 92 absexpd φ x X B 2 = B 2
97 95 96 breqtrrd φ x X E 2 B 2
98 59 60 63 64 65 90 97 lediv12ad φ x X C B D A B 2 U R + T Q E 2
99 58 98 eqbrtrd φ x X C B D A B 2 U R + T Q E 2
100 57 99 eqbrtrd φ x X F x U R + T Q E 2
101 100 ralrimiva φ x X F x U R + T Q E 2
102 brralrspcev U R + T Q E 2 x X F x U R + T Q E 2 b x X F x b
103 30 101 102 syl2anc φ b x X F x b