Metamath Proof Explorer


Theorem dvds0lem

Description: A lemma to assist theorems of || with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvds0lem K M N K M = N M N

Proof

Step Hyp Ref Expression
1 oveq1 x = K x M = K M
2 1 eqeq1d x = K x M = N K M = N
3 2 rspcev K K M = N x x M = N
4 3 adantl M N K K M = N x x M = N
5 divides M N M N x x M = N
6 5 adantr M N K K M = N M N x x M = N
7 4 6 mpbird M N K K M = N M N
8 7 expr M N K K M = N M N
9 8 3impa M N K K M = N M N
10 9 3comr K M N K M = N M N
11 10 imp K M N K M = N M N