Metamath Proof Explorer


Theorem dvds1lem

Description: A lemma to assist theorems of || with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses dvds1lem.1 φ J K
dvds1lem.2 φ M N
dvds1lem.3 φ x Z
dvds1lem.4 φ x x J = K Z M = N
Assertion dvds1lem φ J K M N

Proof

Step Hyp Ref Expression
1 dvds1lem.1 φ J K
2 dvds1lem.2 φ M N
3 dvds1lem.3 φ x Z
4 dvds1lem.4 φ x x J = K Z M = N
5 oveq1 z = Z z M = Z M
6 5 eqeq1d z = Z z M = N Z M = N
7 6 rspcev Z Z M = N z z M = N
8 3 4 7 syl6an φ x x J = K z z M = N
9 8 rexlimdva φ x x J = K z z M = N
10 divides J K J K x x J = K
11 1 10 syl φ J K x x J = K
12 divides M N M N z z M = N
13 2 12 syl φ M N z z M = N
14 9 11 13 3imtr4d φ J K M N