Metamath Proof Explorer


Theorem dvds2lem

Description: A lemma to assist theorems of || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses dvds2lem.1 φ I J
dvds2lem.2 φ K L
dvds2lem.3 φ M N
dvds2lem.4 φ x y Z
dvds2lem.5 φ x y x I = J y K = L Z M = N
Assertion dvds2lem φ I J K L M N

Proof

Step Hyp Ref Expression
1 dvds2lem.1 φ I J
2 dvds2lem.2 φ K L
3 dvds2lem.3 φ M N
4 dvds2lem.4 φ x y Z
5 dvds2lem.5 φ x y x I = J y K = L Z M = N
6 divides I J I J x x I = J
7 divides K L K L y y K = L
8 6 7 bi2anan9 I J K L I J K L x x I = J y y K = L
9 1 2 8 syl2anc φ I J K L x x I = J y y K = L
10 9 biimpd φ I J K L x x I = J y y K = L
11 reeanv x y x I = J y K = L x x I = J y y K = L
12 10 11 syl6ibr φ I J K L x y x I = J y K = L
13 oveq1 z = Z z M = Z M
14 13 eqeq1d z = Z z M = N Z M = N
15 14 rspcev Z Z M = N z z M = N
16 4 5 15 syl6an φ x y x I = J y K = L z z M = N
17 16 rexlimdvva φ x y x I = J y K = L z z M = N
18 12 17 syld φ I J K L z z M = N
19 divides M N M N z z M = N
20 3 19 syl φ M N z z M = N
21 18 20 sylibrd φ I J K L M N