Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
|
2 |
|
simpr2 |
|
3 |
1 2
|
jca |
|
4 |
|
simpr3 |
|
5 |
1 4
|
jca |
|
6 |
|
simpll |
|
7 |
6 2
|
zmulcld |
|
8 |
|
simplr |
|
9 |
8 4
|
zmulcld |
|
10 |
7 9
|
zaddcld |
|
11 |
1 10
|
jca |
|
12 |
|
zmulcl |
|
13 |
|
zmulcl |
|
14 |
12 13
|
anim12i |
|
15 |
14
|
an4s |
|
16 |
15
|
expcom |
|
17 |
16
|
adantr |
|
18 |
17
|
imp |
|
19 |
|
zaddcl |
|
20 |
18 19
|
syl |
|
21 |
|
zcn |
|
22 |
|
zcn |
|
23 |
21 22
|
anim12i |
|
24 |
18 23
|
syl |
|
25 |
1
|
zcnd |
|
26 |
25
|
adantr |
|
27 |
|
adddir |
|
28 |
27
|
3expa |
|
29 |
24 26 28
|
syl2anc |
|
30 |
|
zcn |
|
31 |
30
|
adantr |
|
32 |
31
|
adantl |
|
33 |
|
zcn |
|
34 |
33
|
ad3antrrr |
|
35 |
32 34 26
|
mul32d |
|
36 |
|
zcn |
|
37 |
36
|
adantl |
|
38 |
37
|
adantl |
|
39 |
8
|
zcnd |
|
40 |
39
|
adantr |
|
41 |
38 40 26
|
mul32d |
|
42 |
35 41
|
oveq12d |
|
43 |
32 26
|
mulcld |
|
44 |
43 34
|
mulcomd |
|
45 |
38 26
|
mulcld |
|
46 |
45 40
|
mulcomd |
|
47 |
44 46
|
oveq12d |
|
48 |
29 42 47
|
3eqtrd |
|
49 |
|
oveq2 |
|
50 |
|
oveq2 |
|
51 |
49 50
|
oveqan12d |
|
52 |
48 51
|
sylan9eq |
|
53 |
52
|
ex |
|
54 |
3 5 11 20 53
|
dvds2lem |
|