Metamath Proof Explorer


Theorem dvds2subd

Description: Deduction form of dvds2sub . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses dvds2subd.k φ K
dvds2subd.m φ M
dvds2subd.n φ N
dvds2subd.1 φ K M
dvds2subd.2 φ K N
Assertion dvds2subd φ K M N

Proof

Step Hyp Ref Expression
1 dvds2subd.k φ K
2 dvds2subd.m φ M
3 dvds2subd.n φ N
4 dvds2subd.1 φ K M
5 dvds2subd.2 φ K N
6 dvds2sub K M N K M K N K M N
7 1 2 3 6 syl3anc φ K M K N K M N
8 4 5 7 mp2and φ K M N