Metamath Proof Explorer


Theorem dvdsacongtr

Description: Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion dvdsacongtr A B C D D A A B C A B C D B C D B C

Proof

Step Hyp Ref Expression
1 simprr A B C D D
2 1 ad2antrr A B C D D A A B C D
3 simp-4l A B C D D A A B C A
4 simplr A B C D B
5 4 ad2antrr A B C D D A A B C B
6 simprl A B C D C
7 6 ad2antrr A B C D D A A B C C
8 5 7 zsubcld A B C D D A A B C B C
9 simplr A B C D D A A B C D A
10 simpr A B C D D A A B C A B C
11 2 3 8 9 10 dvdstrd A B C D D A A B C D B C
12 11 ex A B C D D A A B C D B C
13 1 ad2antrr A B C D D A A B C D
14 simp-4l A B C D D A A B C A
15 4 ad2antrr A B C D D A A B C B
16 6 ad2antrr A B C D D A A B C C
17 16 znegcld A B C D D A A B C C
18 15 17 zsubcld A B C D D A A B C B C
19 simplr A B C D D A A B C D A
20 simpr A B C D D A A B C A B C
21 13 14 18 19 20 dvdstrd A B C D D A A B C D B C
22 21 ex A B C D D A A B C D B C
23 12 22 orim12d A B C D D A A B C A B C D B C D B C
24 23 expimpd A B C D D A A B C A B C D B C D B C
25 24 3impia A B C D D A A B C A B C D B C D B C