Metamath Proof Explorer


Theorem dvdsadd

Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 13-Jul-2014)

Ref Expression
Assertion dvdsadd M N M N M M + N

Proof

Step Hyp Ref Expression
1 simpl M N M
2 zaddcl M N M + N
3 simpr M N N
4 iddvds M M M
5 4 adantr M N M M
6 zcn M M
7 zcn N N
8 pncan M N M + N - N = M
9 6 7 8 syl2an M N M + N - N = M
10 5 9 breqtrrd M N M M + N - N
11 dvdssub2 M M + N N M M + N - N M M + N M N
12 1 2 3 10 11 syl31anc M N M M + N M N
13 12 bicomd M N M N M M + N