Metamath Proof Explorer


Theorem dvdsadd2b

Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014)

Ref Expression
Assertion dvdsadd2b A B C A C A B A C + B

Proof

Step Hyp Ref Expression
1 simpl1 A B C A C A B A
2 simpl3l A B C A C A B C
3 simpl2 A B C A C A B B
4 simpl3r A B C A C A B A C
5 simpr A B C A C A B A B
6 1 2 3 4 5 dvds2addd A B C A C A B A C + B
7 simpl1 A B C A C A C + B A
8 simp3l A B C A C C
9 simp2 A B C A C B
10 zaddcl C B C + B
11 8 9 10 syl2anc A B C A C C + B
12 11 adantr A B C A C A C + B C + B
13 8 znegcld A B C A C C
14 13 adantr A B C A C A C + B C
15 simpr A B C A C A C + B A C + B
16 simpl3r A B C A C A C + B A C
17 simpl3l A B C A C A C + B C
18 dvdsnegb A C A C A C
19 7 17 18 syl2anc A B C A C A C + B A C A C
20 16 19 mpbid A B C A C A C + B A C
21 7 12 14 15 20 dvds2addd A B C A C A C + B A C + B + C
22 simpl2 A B C A C A C + B B
23 10 ancoms B C C + B
24 23 zcnd B C C + B
25 zcn C C
26 25 adantl B C C
27 24 26 negsubd B C C + B + C = C + B - C
28 zcn B B
29 28 adantr B C B
30 26 29 pncan2d B C C + B - C = B
31 27 30 eqtrd B C C + B + C = B
32 22 17 31 syl2anc A B C A C A C + B C + B + C = B
33 21 32 breqtrd A B C A C A C + B A B
34 6 33 impbida A B C A C A B A C + B