Metamath Proof Explorer


Theorem dvdsaddr

Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion dvdsaddr M N M N M N + M

Proof

Step Hyp Ref Expression
1 dvdsadd M N M N M M + N
2 zcn M M
3 zcn N N
4 addcom M N M + N = N + M
5 2 3 4 syl2an M N M + N = N + M
6 5 breq2d M N M M + N M N + M
7 1 6 bitrd M N M N M N + M