Metamath Proof Explorer


Theorem dvdsaddre2b

Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b only requiring B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion dvdsaddre2b A B C A C A B A C + B

Proof

Step Hyp Ref Expression
1 dvdsadd2b A B C A C A B A C + B
2 1 a1d A B C A C B A B A C + B
3 2 3exp A B C A C B A B A C + B
4 3 com24 A B C A C B A B A C + B
5 4 3imp A B C A C B A B A C + B
6 5 com12 B A B C A C A B A C + B
7 dvdszrcl A B A B
8 pm2.24 B ¬ B A C + B
9 7 8 simpl2im A B ¬ B A C + B
10 9 com12 ¬ B A B A C + B
11 10 adantr ¬ B A B C A C A B A C + B
12 dvdszrcl A C + B A C + B
13 zcn C C
14 13 adantr C B ¬ B C
15 recn B B
16 15 ad2antrl C B ¬ B B
17 14 16 addcomd C B ¬ B C + B = B + C
18 eldif B B ¬ B
19 nzadd B C B + C
20 19 eldifbd B C ¬ B + C
21 20 expcom C B ¬ B + C
22 18 21 syl5bir C B ¬ B ¬ B + C
23 22 imp C B ¬ B ¬ B + C
24 17 23 eqneltrd C B ¬ B ¬ C + B
25 24 exp32 C B ¬ B ¬ C + B
26 pm2.21 ¬ C + B C + B A B
27 25 26 syl8 C B ¬ B C + B A B
28 27 adantr C A C B ¬ B C + B A B
29 28 com12 B C A C ¬ B C + B A B
30 29 a1i A B C A C ¬ B C + B A B
31 30 3imp A B C A C ¬ B C + B A B
32 31 impcom ¬ B A B C A C C + B A B
33 32 com12 C + B ¬ B A B C A C A B
34 12 33 simpl2im A C + B ¬ B A B C A C A B
35 34 com12 ¬ B A B C A C A C + B A B
36 11 35 impbid ¬ B A B C A C A B A C + B
37 36 ex ¬ B A B C A C A B A C + B
38 6 37 pm2.61i A B C A C A B A C + B