Metamath Proof Explorer


Theorem dvdscmulr

Description: Cancellation law for the divides relation. Theorem 1.1(e) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdscmulr M N K K 0 K M K N M N

Proof

Step Hyp Ref Expression
1 zmulcl K M K M
2 1 3adant3 K M N K M
3 zmulcl K N K N
4 3 3adant2 K M N K N
5 2 4 jca K M N K M K N
6 5 3coml M N K K M K N
7 6 3adant3r M N K K 0 K M K N
8 3simpa M N K K 0 M N
9 simpr M N K K 0 x x
10 zcn x x
11 zcn M M
12 10 11 anim12i x M x M
13 zcn N N
14 zcn K K
15 14 anim1i K K 0 K K 0
16 mul12 K x M K x M = x K M
17 16 3adant1r K K 0 x M K x M = x K M
18 17 3expb K K 0 x M K x M = x K M
19 18 ancoms x M K K 0 K x M = x K M
20 19 3adant2 x M N K K 0 K x M = x K M
21 20 eqeq1d x M N K K 0 K x M = K N x K M = K N
22 mulcl x M x M
23 mulcan x M N K K 0 K x M = K N x M = N
24 22 23 syl3an1 x M N K K 0 K x M = K N x M = N
25 21 24 bitr3d x M N K K 0 x K M = K N x M = N
26 12 13 15 25 syl3an x M N K K 0 x K M = K N x M = N
27 26 3expb x M N K K 0 x K M = K N x M = N
28 27 3impa x M N K K 0 x K M = K N x M = N
29 28 3coml M N K K 0 x x K M = K N x M = N
30 29 3expia M N K K 0 x x K M = K N x M = N
31 30 3impb M N K K 0 x x K M = K N x M = N
32 31 imp M N K K 0 x x K M = K N x M = N
33 32 biimpd M N K K 0 x x K M = K N x M = N
34 7 8 9 33 dvds1lem M N K K 0 K M K N M N
35 dvdscmul M N K M N K M K N
36 35 3adant3r M N K K 0 M N K M K N
37 34 36 impbid M N K K 0 K M K N M N