Metamath Proof Explorer


Theorem dvdsdivcl

Description: The complement of a divisor of N is also a divisor of N . (Contributed by Mario Carneiro, 2-Jul-2015) (Proof shortened by AV, 9-Aug-2021)

Ref Expression
Assertion dvdsdivcl N A x | x N N A x | x N

Proof

Step Hyp Ref Expression
1 breq1 x = A x N A N
2 1 elrab A x | x N A A N
3 nndivdvds N A A N N A
4 3 biimpd N A A N N A
5 4 expcom A N A N N A
6 5 com23 A A N N N A
7 6 imp A A N N N A
8 nnne0 A A 0
9 8 anim1ci A A N A N A 0
10 divconjdvds A N A 0 N A N
11 9 10 syl A A N N A N
12 7 11 jctird A A N N N A N A N
13 2 12 sylbi A x | x N N N A N A N
14 13 impcom N A x | x N N A N A N
15 breq1 x = N A x N N A N
16 15 elrab N A x | x N N A N A N
17 14 16 sylibr N A x | x N N A x | x N