Metamath Proof Explorer


Theorem dvdsexp

Description: A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion dvdsexp A M 0 N M A M A N

Proof

Step Hyp Ref Expression
1 simp1 A M 0 N M A
2 uznn0sub N M N M 0
3 2 3ad2ant3 A M 0 N M N M 0
4 zexpcl A N M 0 A N M
5 1 3 4 syl2anc A M 0 N M A N M
6 zexpcl A M 0 A M
7 6 3adant3 A M 0 N M A M
8 dvdsmul2 A N M A M A M A N M A M
9 5 7 8 syl2anc A M 0 N M A M A N M A M
10 1 zcnd A M 0 N M A
11 simp2 A M 0 N M M 0
12 10 11 3 expaddd A M 0 N M A N - M + M = A N M A M
13 eluzelcn N M N
14 13 3ad2ant3 A M 0 N M N
15 11 nn0cnd A M 0 N M M
16 14 15 npcand A M 0 N M N - M + M = N
17 16 oveq2d A M 0 N M A N - M + M = A N
18 12 17 eqtr3d A M 0 N M A N M A M = A N
19 9 18 breqtrd A M 0 N M A M A N