Metamath Proof Explorer


Theorem dvdsexp2im

Description: If an integer divides another integer, then it also divides any of its powers. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dvdsexp2im K M N K M K M N

Proof

Step Hyp Ref Expression
1 divides K M K M m m K = M
2 1 3adant3 K M N K M m m K = M
3 simpl1 K M N m K
4 nnnn0 N N 0
5 4 3ad2ant3 K M N N 0
6 5 adantr K M N m N 0
7 zexpcl K N 0 K N
8 3 6 7 syl2anc K M N m K N
9 simpr K M N m m
10 zexpcl m N 0 m N
11 9 6 10 syl2anc K M N m m N
12 11 8 zmulcld K M N m m N K N
13 simpl3 K M N m N
14 iddvdsexp K N K K N
15 3 13 14 syl2anc K M N m K K N
16 dvdsmul2 m N K N K N m N K N
17 11 8 16 syl2anc K M N m K N m N K N
18 3 8 12 15 17 dvdstrd K M N m K m N K N
19 zcn m m
20 19 adantl K M N m m
21 zcn K K
22 21 3ad2ant1 K M N K
23 22 adantr K M N m K
24 20 23 6 mulexpd K M N m m K N = m N K N
25 18 24 breqtrrd K M N m K m K N
26 oveq1 m K = M m K N = M N
27 26 breq2d m K = M K m K N K M N
28 25 27 syl5ibcom K M N m m K = M K M N
29 28 rexlimdva K M N m m K = M K M N
30 2 29 sylbid K M N K M K M N