Step |
Hyp |
Ref |
Expression |
1 |
|
divides |
|
2 |
1
|
3adant3 |
|
3 |
|
simpl1 |
|
4 |
|
nnnn0 |
|
5 |
4
|
3ad2ant3 |
|
6 |
5
|
adantr |
|
7 |
|
zexpcl |
|
8 |
3 6 7
|
syl2anc |
|
9 |
|
simpr |
|
10 |
|
zexpcl |
|
11 |
9 6 10
|
syl2anc |
|
12 |
11 8
|
zmulcld |
|
13 |
|
simpl3 |
|
14 |
|
iddvdsexp |
|
15 |
3 13 14
|
syl2anc |
|
16 |
|
dvdsmul2 |
|
17 |
11 8 16
|
syl2anc |
|
18 |
3 8 12 15 17
|
dvdstrd |
|
19 |
|
zcn |
|
20 |
19
|
adantl |
|
21 |
|
zcn |
|
22 |
21
|
3ad2ant1 |
|
23 |
22
|
adantr |
|
24 |
20 23 6
|
mulexpd |
|
25 |
18 24
|
breqtrrd |
|
26 |
|
oveq1 |
|
27 |
26
|
breq2d |
|
28 |
25 27
|
syl5ibcom |
|
29 |
28
|
rexlimdva |
|
30 |
2 29
|
sylbid |
|