| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divides |  | 
						
							| 2 | 1 | 3adant3 |  | 
						
							| 3 |  | zexpcl |  | 
						
							| 4 | 3 | ancoms |  | 
						
							| 5 | 4 | adantll |  | 
						
							| 6 |  | zexpcl |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | dvdsmul2 |  | 
						
							| 9 | 5 7 8 | syl2anc |  | 
						
							| 10 |  | zcn |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | zcn |  | 
						
							| 13 | 12 | ad2antrr |  | 
						
							| 14 |  | simplr |  | 
						
							| 15 | 11 13 14 | mulexpd |  | 
						
							| 16 | 9 15 | breqtrrd |  | 
						
							| 17 |  | oveq1 |  | 
						
							| 18 | 17 | breq2d |  | 
						
							| 19 | 16 18 | syl5ibcom |  | 
						
							| 20 | 19 | rexlimdva |  | 
						
							| 21 | 20 | 3adant2 |  | 
						
							| 22 | 2 21 | sylbid |  |