Metamath Proof Explorer


Theorem dvdsext

Description: Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion dvdsext A 0 B 0 A = B x 0 A x B x

Proof

Step Hyp Ref Expression
1 breq1 A = B A x B x
2 1 ralrimivw A = B x 0 A x B x
3 simpll A 0 B 0 x 0 A x B x A 0
4 simplr A 0 B 0 x 0 A x B x B 0
5 nn0z B 0 B
6 iddvds B B B
7 5 6 syl B 0 B B
8 7 ad2antlr A 0 B 0 x 0 A x B x B B
9 breq2 x = B A x A B
10 breq2 x = B B x B B
11 9 10 bibi12d x = B A x B x A B B B
12 11 rspcva B 0 x 0 A x B x A B B B
13 12 adantll A 0 B 0 x 0 A x B x A B B B
14 8 13 mpbird A 0 B 0 x 0 A x B x A B
15 nn0z A 0 A
16 iddvds A A A
17 15 16 syl A 0 A A
18 17 ad2antrr A 0 B 0 x 0 A x B x A A
19 breq2 x = A A x A A
20 breq2 x = A B x B A
21 19 20 bibi12d x = A A x B x A A B A
22 21 rspcva A 0 x 0 A x B x A A B A
23 22 adantlr A 0 B 0 x 0 A x B x A A B A
24 18 23 mpbid A 0 B 0 x 0 A x B x B A
25 dvdseq A 0 B 0 A B B A A = B
26 3 4 14 24 25 syl22anc A 0 B 0 x 0 A x B x A = B
27 26 ex A 0 B 0 x 0 A x B x A = B
28 2 27 impbid2 A 0 B 0 A = B x 0 A x B x