| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsflsumcom.1 |
|
| 2 |
|
dvdsflsumcom.2 |
|
| 3 |
|
dvdsflsumcom.3 |
|
| 4 |
|
fzfid |
|
| 5 |
|
fzfid |
|
| 6 |
|
elfznn |
|
| 7 |
6
|
adantl |
|
| 8 |
|
dvdsssfz1 |
|
| 9 |
7 8
|
syl |
|
| 10 |
5 9
|
ssfid |
|
| 11 |
|
nnre |
|
| 12 |
11
|
ad2antrl |
|
| 13 |
7
|
adantr |
|
| 14 |
13
|
nnred |
|
| 15 |
2
|
ad2antrr |
|
| 16 |
|
nnz |
|
| 17 |
|
dvdsle |
|
| 18 |
16 7 17
|
syl2anr |
|
| 19 |
18
|
impr |
|
| 20 |
|
fznnfl |
|
| 21 |
2 20
|
syl |
|
| 22 |
21
|
simplbda |
|
| 23 |
22
|
adantr |
|
| 24 |
12 14 15 19 23
|
letrd |
|
| 25 |
24
|
ex |
|
| 26 |
25
|
pm4.71rd |
|
| 27 |
|
ancom |
|
| 28 |
|
an32 |
|
| 29 |
27 28
|
bitri |
|
| 30 |
26 29
|
bitrdi |
|
| 31 |
|
fznnfl |
|
| 32 |
2 31
|
syl |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
anbi1d |
|
| 35 |
30 34
|
bitr4d |
|
| 36 |
35
|
pm5.32da |
|
| 37 |
|
an12 |
|
| 38 |
36 37
|
bitrdi |
|
| 39 |
|
breq1 |
|
| 40 |
39
|
elrab |
|
| 41 |
40
|
anbi2i |
|
| 42 |
|
breq2 |
|
| 43 |
42
|
elrab |
|
| 44 |
43
|
anbi2i |
|
| 45 |
38 41 44
|
3bitr4g |
|
| 46 |
4 4 10 45 3
|
fsumcom2 |
|
| 47 |
|
fzfid |
|
| 48 |
2
|
adantr |
|
| 49 |
32
|
simprbda |
|
| 50 |
|
eqid |
|
| 51 |
48 49 50
|
dvdsflf1o |
|
| 52 |
|
oveq2 |
|
| 53 |
|
ovex |
|
| 54 |
52 50 53
|
fvmpt |
|
| 55 |
54
|
adantl |
|
| 56 |
45
|
biimpar |
|
| 57 |
56 3
|
syldan |
|
| 58 |
57
|
anassrs |
|
| 59 |
1 47 51 55 58
|
fsumf1o |
|
| 60 |
59
|
sumeq2dv |
|
| 61 |
46 60
|
eqtrd |
|