Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsflsumcom.1 |
|
2 |
|
dvdsflsumcom.2 |
|
3 |
|
dvdsflsumcom.3 |
|
4 |
|
fzfid |
|
5 |
|
fzfid |
|
6 |
|
elfznn |
|
7 |
6
|
adantl |
|
8 |
|
dvdsssfz1 |
|
9 |
7 8
|
syl |
|
10 |
5 9
|
ssfid |
|
11 |
|
nnre |
|
12 |
11
|
ad2antrl |
|
13 |
7
|
adantr |
|
14 |
13
|
nnred |
|
15 |
2
|
ad2antrr |
|
16 |
|
nnz |
|
17 |
|
dvdsle |
|
18 |
16 7 17
|
syl2anr |
|
19 |
18
|
impr |
|
20 |
|
fznnfl |
|
21 |
2 20
|
syl |
|
22 |
21
|
simplbda |
|
23 |
22
|
adantr |
|
24 |
12 14 15 19 23
|
letrd |
|
25 |
24
|
ex |
|
26 |
25
|
pm4.71rd |
|
27 |
|
ancom |
|
28 |
|
an32 |
|
29 |
27 28
|
bitri |
|
30 |
26 29
|
bitrdi |
|
31 |
|
fznnfl |
|
32 |
2 31
|
syl |
|
33 |
32
|
adantr |
|
34 |
33
|
anbi1d |
|
35 |
30 34
|
bitr4d |
|
36 |
35
|
pm5.32da |
|
37 |
|
an12 |
|
38 |
36 37
|
bitrdi |
|
39 |
|
breq1 |
|
40 |
39
|
elrab |
|
41 |
40
|
anbi2i |
|
42 |
|
breq2 |
|
43 |
42
|
elrab |
|
44 |
43
|
anbi2i |
|
45 |
38 41 44
|
3bitr4g |
|
46 |
4 4 10 45 3
|
fsumcom2 |
|
47 |
|
fzfid |
|
48 |
2
|
adantr |
|
49 |
32
|
simprbda |
|
50 |
|
eqid |
|
51 |
48 49 50
|
dvdsflf1o |
|
52 |
|
oveq2 |
|
53 |
|
ovex |
|
54 |
52 50 53
|
fvmpt |
|
55 |
54
|
adantl |
|
56 |
45
|
biimpar |
|
57 |
56 3
|
syldan |
|
58 |
57
|
anassrs |
|
59 |
1 47 51 55 58
|
fsumf1o |
|
60 |
59
|
sumeq2dv |
|
61 |
46 60
|
eqtrd |
|