Metamath Proof Explorer


Theorem dvdsgcdb

Description: Biconditional form of dvdsgcd . (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dvdsgcdb K M N K M K N K M gcd N

Proof

Step Hyp Ref Expression
1 dvdsgcd K M N K M K N K M gcd N
2 gcddvds M N M gcd N M M gcd N N
3 2 simpld M N M gcd N M
4 3 3adant1 K M N M gcd N M
5 simp1 K M N K
6 gcdcl M N M gcd N 0
7 6 nn0zd M N M gcd N
8 7 3adant1 K M N M gcd N
9 simp2 K M N M
10 dvdstr K M gcd N M K M gcd N M gcd N M K M
11 5 8 9 10 syl3anc K M N K M gcd N M gcd N M K M
12 4 11 mpan2d K M N K M gcd N K M
13 2 simprd M N M gcd N N
14 13 3adant1 K M N M gcd N N
15 dvdstr K M gcd N N K M gcd N M gcd N N K N
16 8 15 syld3an2 K M N K M gcd N M gcd N N K N
17 14 16 mpan2d K M N K M gcd N K N
18 12 17 jcad K M N K M gcd N K M K N
19 1 18 impbid K M N K M K N K M gcd N