Metamath Proof Explorer


Theorem dvdslcmf

Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020)

Ref Expression
Assertion dvdslcmf Z Z Fin x Z x lcm _ Z

Proof

Step Hyp Ref Expression
1 ssel Z x Z x
2 1 ad2antrr Z Z Fin 0 Z x Z x
3 2 imp Z Z Fin 0 Z x Z x
4 dvds0 x x 0
5 3 4 syl Z Z Fin 0 Z x Z x 0
6 lcmf0val Z 0 Z lcm _ Z = 0
7 6 ad4ant13 Z Z Fin 0 Z x Z lcm _ Z = 0
8 5 7 breqtrrd Z Z Fin 0 Z x Z x lcm _ Z
9 8 ralrimiva Z Z Fin 0 Z x Z x lcm _ Z
10 df-nel 0 Z ¬ 0 Z
11 lcmfcllem Z Z Fin 0 Z lcm _ Z n | x Z x n
12 11 3expa Z Z Fin 0 Z lcm _ Z n | x Z x n
13 10 12 sylan2br Z Z Fin ¬ 0 Z lcm _ Z n | x Z x n
14 lcmfn0cl Z Z Fin 0 Z lcm _ Z
15 14 3expa Z Z Fin 0 Z lcm _ Z
16 10 15 sylan2br Z Z Fin ¬ 0 Z lcm _ Z
17 breq2 n = lcm _ Z x n x lcm _ Z
18 17 ralbidv n = lcm _ Z x Z x n x Z x lcm _ Z
19 18 elrab3 lcm _ Z lcm _ Z n | x Z x n x Z x lcm _ Z
20 16 19 syl Z Z Fin ¬ 0 Z lcm _ Z n | x Z x n x Z x lcm _ Z
21 13 20 mpbid Z Z Fin ¬ 0 Z x Z x lcm _ Z
22 9 21 pm2.61dan Z Z Fin x Z x lcm _ Z